Ciencia y Tecnología Informática

Revista Científica de Informática
Año 5, N°5, noviembre 2024
Instituto de Investigación y Desarrollo de Aplicaciones Informáticas IIDAI
Ingeniería Informática
Universidad Nacional "Siglo XX"
Llallagua - Bolivia

ISSN Impreso: 3078 - 2449 ISSN Digital: 3078 - 2457 Depósito Legal: 7 - 3 - 376 - 2021

Revista Ciencia y Tecnología Informática, Año 5, N°5, noviembre 2024

REVISTA CIENCIA Y TECNOLOGÍA INFORMÁTICA Año 5, N°5, noviembre 2024

Universidad Nacional "Siglo XX" Ingeniería Informática Instituto de Investigación y Desarrollo de Aplicaciones Informáticas Llallagua, Bolivia

AUTORIDADES UNIVERSITARIAS

RECTOR: M.Sc. Pablo Ramiro Martinez Bustillos **VICERRECTOR:** Cc. Gabino Rodriguez Rocha

DIRECTOR GENERAL ACADÉMICO: M.Sc. Jhonny Sandro Soria Zamuriano

DIRECTOR GENERAL DE INVESTIGACIÓN: M.Sc. Abraham Williams Pillco Colque

DIRECTOR GENERAL DE EXTENSIÓN: Lic. Marina Arias Blanco

DIRECTOR FORMACIÓN POLÍTICO SINDICAL: Cc. Rene Alfredo Fabrica Mamani **DIRECTOR INGENIERÍA INFORMÁTICA:** Santos Ireneo Juchasara Colque, Ph.D.

DIRECCIÓN Y EDICIÓN

Juan Pablo Luna Felipez, Ph.D.

COMITÉ EDITORIAL

Santos Juchasara Colque, Ph.D. Leyna Salinas Veyzaga, Ph.D. Jorge Villcaez Castillo, Ph.D.

PARES REVISORES

Yohoni Cuenca Zarzuri, Ph.D. Boris Adolfo Llanos Torrico, Ph.D. Said Eduardo Pérez Poope, M.Sc. Tito Reinaldo Delgadillo Lopez Ph.D. Leyna Salinas Veyzaga, Ph.D. Juan Pablo Luna Felipez, Ph.D. Hernan Luis Helguero Velasquez, Esp. Santos Ireneo Juchasara Colque, Ph.D. Jorge Villcaez Castillo, Ph.D.

EQUIPO TÉCNICO

Ilsen Arlette Corpa Limachi Alex Cristian Ramos Colque Lea Fernanda Choque Martínez

PUBLICACIÓN

Instituto de Investigación y Desarrollo de Aplicaciones Informáticas IIDAI **LICENCIA**

Esta revista se distribuye bajo la Licencia CC BY-NC-SA con el fin de garantizar la protección de la producción académica y científica de acceso abierto.

AUTORES

Yohoni Cuenca Sarzuri, Ph.D.

Víctor Hugo Aranibar, Ph.D.

Juan Pablo Luna Felipez, Ph.D.

Santos Ireneo Juchasara Colque, Ph.D.

Leyna Roxana Salinas Veyzaga, Ph.D.

Jorge Villcáez Castillo, Ph.D.

Freddy Rocabado Ibáñez, M.Sc.

Ilsen Arlette Corpa Limachi

Alex Cristian Ramos Colque

Lisbeth Quiruchi

^{*}El contenido cada artículo incluido en la presente revista científica, es de propiedad y responsabilidad exclusiva de sus respectivos autores

PRESENTACIÓN

La Carrera de Ingeniería Informática de la Universidad Nacional "Siglo XX", a través del Instituto de Investigación y Desarrollo de Aplicaciones Informáticas (IIDAI), tiene el honor de presentar a la comunidad académica y científica el quinto número de la Revista Científica "Ciencia y Tecnología Informática".

Esta publicación responde al compromiso institucional de promover la generación y difusión del conocimiento científico en el campo de la informática, constituyéndose en un espacio académico que fortalece la formación investigativa de docentes, estudiantes y profesionales afines.

La revista "Ciencia y Tecnología Informática" es una publicación de periodicidad anual, orientada a la divulgación de artículos científicos originales y trabajos de revisión académica, que abordan temáticas de relevancia en el ámbito de la informática y sus aplicaciones. Su propósito es contribuir al desarrollo científico-tecnológico, fomentar el pensamiento crítico y apoyar la construcción de soluciones innovadoras en beneficio de la sociedad.

En esta edición se presentan diez artículos, resultado del trabajo riguroso de investigadores comprometidos con el avance del conocimiento. Confiamos en que los contenidos aquí reunidos serán de utilidad como referencia académica, fuente de inspiración para nuevas investigaciones y aportes significativos a los desafíos contemporáneos de la ciencia y la tecnología informática.

Juan Pablo Luna Felipez, Ph.D.

Director Revista "Ciencia y Tecnología Informática"

Universidad Nacional "Siglo XX

PRÓLOGO

Me es grato dirigirme con unas palabras en esta edición especial de la revista "CIENCIA Y TECNOLOGÍA INFORMÁTICA" volumen 5. Como director de la carrera de Ingeniería Informática en la Universidad Nacional "Siglo XX", me enorgullece destacar los importantes trabajos desarrollados por profesionales, docentes y estudiantes de nuestra prestigiosa carrera y país.

El Instituto de Investigación y Desarrollo de Aplicaciones Informáticas (IIDAI) a la cabeza del Coordinador del Instituto Dr. Juan Pablo Luna Felipez, Ph.D. va promoviendo la cultura de la investigación bajo los lineamientos y políticas de investigación a nivel de la carrera. Fruto de ello se va reflejando los diferentes trabajos que se pueden evidenciar en las publicaciones y proyectos de nuestros investigadores, que figuran en esta edición de la revista.

Insto a seguir generando conocimiento a docentes y estudiantes de la carrera, más aún cuando la carrera va encaminada a procesos de evaluación externa rumbo a la acreditación. Estoy convencido de que este tipo de trabajos fortalecen la calidad académica y el intercambio de conocimientos en nuestra carrera y por ende toda la comunidad universitaria.

¡Disfruten de esta edición estimados lectores!

Atentamente,

.

Santos Ireneo Juchasara Colque, Ph.D. Director Carrera Ingeniería Informática Universidad Nacional "Siglo XX"

ÍNDICE

GEMELOS DIGITALES Y CIUDADES INTELIGENTES	6
ESTADO DEL CONOCIMIENTO: VISUALIZACIÓN DE IMAGEN DIGITAL INMERSIVA Y SU TRATAMIENTO EN LA DIFUSIÓN DEL PATRIMONIO CULTURAL INMUEBLE DE ARTE RUPESTI CON FINES TURÍSTICOS	RE 11
INTERACCIÓN HUMANO COMPUTADOR: UN MÉTODO PARA EL RECONOCIMIENTO DE GESTO DE LA MANO A PARTIR DE IMÁGENES	OS 27
LA COMPUTACIÓN AFECTIVA Y LA EDUCACIÓN	39
MODELO PREDICTIVO PARA IDENTIFICAR DELITOS DE ACOSO EN LA RED SOCIAL FACEBOO APLICANDO BIG DATA	OK 43
USO DE EXOESQUELETOS ROBÓTICOS PARA REHABILITACIÓN DE PACIENTES CON DIFICULTAD DE MOVIMIENTO	47
SIMULANDO REDES MÓVILES DE FORMA GENÉRICA DE LAS EMPRESAS DE TELECOMUNICACIONES	53
IMPLEMENTACIÓN DE UN SISTEMA DE CLASIFICACIÓN DE RESIDUOS MEDIANTE VISIÓN ARTIFICIAL PARA EL RECICLAJE	65
VALIDACIÓN DE IDENTIDAD BIOMÉTRICA PARA EL REGISTRO DE ENTRADA DEL PERSONA. IIDAI	L 69
PROMOVER LAS ARTESANÍAS Y TEJIDOS DE GRAN VALOR CULTURAL E HISTÓRICO DEL NORTE POTOSÍ A TRAVÉS TECNOLOGÍAS 3D EN LA WEB	72

GEMELOS DIGITALES Y CIUDADES INTELIGENTES

Yohoni, Cuenca Sarzuri, Ph.D.

yohoni@gmail.com
Ingeniería Informática
Universidad Mayor de San Andrés
La Paz - Bolivia

Resumen: En este artículo, se presenta una revisión de las últimas investigaciones y desarrollos en el ámbito de los Gemelos Digitales que en estos últimos años de crecimiento e innovación tecnológica ha permitido brindar soporte en el control, administración y predicción de sistemas reales, particularmente en ámbito urbano se ha mostrado como una tecnología potente al momento de tomar decisiones en la administración y gestión urbana. En un primer momento se describen los conceptos asociados a Gemelos Digitales y Ciudades Inteligentes. En un segundo momento se describen los proyectos basados en Gemelos Digitales en un contexto general como el caso de Singapur que es uno de los primeros países en aplicar esta tecnología disruptiva. En un tercer momento se describen los proyectos en el contexto de América latina. Finalmente se concluye que los Gemelos Digitales han permitido en gran medida la organización, planificación y administración de áreas urbanas como también la prevención de situaciones de riesgo para el área urbana, reduciendo en gran medida los gastos innecesarios en el desarrollo urbano y priorizando los proyectos que permitirán garantizar los servicios básicos y comodidad del ciudadano. En América latina existen pocos países que están adoptando esta tecnología, por los casos citados en el presente trabajo es de mucha importancia contar con esta tecnología para considerar las múltiples variables asociadas al desarrollo urbano en nuestro contexto social y poder responder al crecimiento exponencial de las áreas urbanas.

Palabras clave. Crecimiento poblacional, Ciudad inteligente, Desarrollo urbano, Gemelos digitales.

Abstract: In this article, a review of the latest research and developments in the field of Digital Twins is presented, which in recent years of growth and technological innovation has allowed us to provide support in the control, administration and prediction of real systems, particularly in urban environment has shown itself to be a powerful technology when making decisions in urban administration and management. At first, the concepts associated with Digital Twins and Smart Cities are described. In a second moment, projects based on Digital Twins are described in a general context, such as the case of Singapore, which is one of the first countries to apply this disruptive technology. In a third moment, the projects are described in the context of Latin America. Finally, it is concluded that the Digital Twins have allowed to a great extent the organization, planning and administration of urban areas as well as the prevention of risk situations for the urban area, greatly reducing the necessary expenses in urban development and prioritizing projects that They will guarantee basic services and the comfort of the citizen. In Latin America there are few countries that are adopting this technology, for the cases cited in this paper it is very important to have this technology to consider the multiple variables associated with urban development in our social context and to be able to respond to the exponential growth of areas. urban.

Keywords. Digital twins, Population growth, Smart city, Urban development,.

1. INTRODUCCIÓN

El presente artículo tiene por objeto realizar una descripción de los trabajos o proyectos urbanos apoyados en la tecnología de Gemelos Digitales también conocido como Digital Twin con la finalidad de comprender cómo esta tecnología en su auge actual está logrando mejorar significativamente la toma de decisiones para controlar y gestionar un área urbana como también prevenir posibles casos de urgencia que pueda afectar al área urbana. Para esto es necesario conocer algunos casos en los cuales se adoptó el uso de Gemelos Digitales y comprender los beneficios logrados por el área urbana. Un problema central en toda área urbana es su crecimiento poblacional por lo cual es necesario proyectar a futuro los proyectos que puedan brindar sostenibilidad a los ciudadanos. La simulación ha permitido analizar una parte del sistema real por medio de su modelo, permitiendo realizar el control y predicción del modelo cambiando el valor de las variables de entrada, al respecto los Gemelos Digitales se muestran como una versión avanzada de la simulación que contiene bastante información en tres dimensiones del sistema con el cual se puede probar los posibles efectos en la salida a partir del valor de las entradas. También es importante indicar que un elemento importante para proyectar una ciudad a ciudad inteligente es la implementación de su Gemelo Digital.

Gemelos digitales

Gelernter (1991) muestra una primera aproximación al concepto de gemelo digital en su libro "el mundo en espejo" en el cual muestra un momento en el desarrollo tecnológico que permite ver partes físicas del mundo e interactuar con ella desde la pantalla de la computadora, esta visión futurista muestra un momento en el desarrollo tecnológico en el cual pueda verse a escala partes del mundo real como en una maqueta dinámica con el cual puedes interactuar hacer cambios que puedan reflejarse en el mundo real. El concepto de un virtual, equivalente digital a un producto físico o gemelo digital fue introducido en 2003 por Grieves (2014) en la universidad de Michigan Curso ejecutivo de gestión del ciclo de vida de un producto, en el cual se muestran tres partes principales: productos físicos en un espacio real, productos virtuales en un espacio virtual y las conexiones de datos e información que vincula el espacio virtual y físico, esta primera aproximación muestra que un componente real puede asociarse a su gemelo virtual que comparte las mismas características que su gemelo real haciendo referencia a las variables de entrada y salida del gemelo virtual. También se atribuye el concepto de gemelo digital a la NASA según Negri et al. (2017) en sus informes o presentación de proyectos asociadas al diseño y control de naves, pero como se observó va hay antecedentes previos que involucran a Grieves (2014), para la NASA (2015) el concepto de gemelo digital es un enfoque que integra un conjunto de soluciones multidisciplinarias, modelos basados en la física que representan todos los materiales, procesos y productos físicos, en última instancia incorpora estas capacidades en la

producción y operación de naves espaciales. Entonces haciendo referencia al último enunciado un Gemelo Digital permite diseñar y experimentar de manera virtual con máquinas antes de su implementación real como también la evaluación de su rendimiento ante situaciones extremas, esto es relevante para proveer los insumos y procesos que se requiera en la implementación de la máquina o sistema real.

A. Aplicaciones de un gemelo digital.

Las aplicaciones de los gemelos digitales se han extendido ampliamente en varias áreas del conocimiento, por ejemplo, en la elaboración y gestión de sistemas de producción (Negri et. al 2017), en el diseño, producción y operación de naves espaciales (NASA, 2015), en las construcciones civiles (Martínez-Manso y Delgado-Fernández, 2023), en la industria automotriz (Hossain et al., 2023), en el campo de la robótica (Kousi et al., 2019), para personalizar el cuidado de la salud (Abdollahi y Rahmim, 2023), como soporte para la gestión y control de las ciudades inteligentes (Bentley, 2021) y otras áreas del conocimiento.

Dilmegami (2023) sintetiza la aplicación de gemelos digitales en cuatro áreas:

Fabricación

- Desarrollo de los productos
- Diseño personalizado
- Mejorando el rendimiento del área de producción
- Mantenimiento predictivo
- Campo aeroespacial
- Campo automotriz
- Desarrollo de vehículos autónomos

• Cuidado de la salud

- Mejorando la eficiencia operativa de las operaciones de atención médica
- Mejorando un cuidado personalizado

• Cadena de suministro

- Predicción del rendimiento de los materiales de empaquetamiento
- o Mejorando la protección de envió
- Optimización el diseño de los almacenes y el rendimiento operativo
- Creación de una red logística

• Venta a minoristas

Modelación y simulación personalizada

En esta variedad de aplicaciones puede resaltarse la implementación de un gemelo digital de una ciudad, el cual podría proporcionar los insumos necesarios para proyectar la ciudad a una ciudad inteligente.

B. Ciudades inteligentes con gemelos digitales

Según el Prospecto de Urbanización de las Naciones Unidas del Mundo 4.2 billones de personas viven en áreas urbanas, para el 2050 se espera que este número pueda expandirse a 6.7 billones (Bentley, 2021). Muchas ciudades están fijando sus objetivos a un desarrollo sostenible como:

- Acceso seguro a servicios de agua, sanidad y energía
- Combatiendo el clima cambiante y sus impactos
- Implementación de transporte inteligente
- Mejorando la planificación de todos los sistemas de la ciudad

Estos problemas centrales en las áreas urbanas también son considerados en las Ciudades Inteligentes, Una ciudad Inteligente refiere a aquellas urbes que colocan al ser humano en el centro del desarrollo, incorporando Tecnologías de la Información y Comunicación en la gestión urbana y usa estos elementos como herramientas para estimular la formación de un gobierno eficiente que incluya procesos de planificación de manera colaborativa haciendo partícipe a la ciudadanía (Bouskela et al., 2016). Aparte de los recursos tecnológicos en los que se pueda apoyar la gestión del área urbana en una ciudad inteligente también es considerando el uso de energía renovable buscando la armonía con el medio ambiente, una ciudad inteligente al servicio del medio ambiente (Rodríguez-Rojas, 2019).

El campo de la Inteligencia Artificial también está inmerso en temas de mejora y administración urbana, por ejemplo, en Savoie (s.f.) se muestra algunas áreas de aplicaciones de la Inteligencia Artificial en las Ciudades Inteligentes:

- Promoción de la salud pública, prevención y manejo de enfermedades (incluyendo rastreos de contacto).
- Espacio de trabajo digital compartido, herramientas de productividad y colaboración
- Herramientas de autoservicio para empleados
- Monitoreo de la seguridad de la infraestructura de Tecnologías de la Información
- Gestión de préstamos y subvenciones
- Monitoreo ambiental (calidad del aire, calidad del agua, monitoreo del clima
- Gestión de flujos de trabajo, documentos y contenidos digitales
- Gestión de instalaciones y edificios

Seguridad pública, seguridad, vigilancia

Un recurso central en las Ciudades Inteligentes para el logro de sus metas se orienta en el soporte tecnológico y la Inteligencia Artificial que en estos últimos años está implícito en el soporte tecnológico, al respecto dentro de este soporte tecnológico se tiene a los gemelos digitales que pueden apoyar al cumplimiento de estos y a otros objetivos en el desarrollo urbano, por ejemplo Bentley (2021) menciona el soporte que proporciona un gemelo digital:

- Visualizar planos y proyectos en el campus en escalas de la ciudad
- Optimizar el crecimiento de la movilidad y su transportación.
- Desarrollar estrategias para responder a las inundaciones
- Administración de proyectos públicos de trabajo
- Apoyar las iniciativas para mejorar la calidad de vida de los residentes

En el caso de Irlanda, el gemelo digital de Dublin, ha permitido acelerar la transformación digital, el proyecto del gemelo digital de Dublin es una iniciativa integrada en febrero del 2020 por la ciudad de Dublín, Bentley Systems y Microsoft para crear un modelo digital a gran escala de la capital de Irlanda y grandes ciudades, esta propuesta permitirá ejecutar soluciones urbanas en los años siguientes, como también medir el impacto en el clima, simular y predecir problemas para medidas preventivas (Bentley, 2021).

Gothenburg es la segunda ciudad más grande de Suecia, está creciendo rápidamente y planea acomodar 150.000 nuevos residentes y 80.000 nuevas casas y oficinas para el año 2035. Gothenburg considera que el uso de un entorno 3D podría involucrar a los habitantes en la planificación urbana, así se creó un modelo 3D completo del área metropolitana, se difunde modelos en 3D de proyectos a los residentes de Gothenburg socializando en línea en dispositivos móviles y salas de exposición, esto permite que los mismos residentes estén inmersos en las decisiones sobre la organización urbana (Bentley, 2021).

En Finlandia, el 2017 Helsinki, invirtió un millón de euros para generar una representación 3D de toda la ciudad, el modelo en la actualidad es proporcionado como datos abiertos para involucrar al público e incentivar la investigación y desarrollo comercial. Se muestra un crecimiento de las ciudades inteligentes con gemelos inteligentes. Los objetivos trazados por Helsinki según Bentley (2021) son:

- Desarrollo de nuevos servicios digitales para la ciudad
- Alcanzar la neutralidad del carbono para el 2035

 Proporcionar acceso abierto al público, industria y desarrolladores externos

Singapur utiliza un gemelo digital para la gestión de tierras en 3D, la plataforma de gemelo digital de Singapur recopila datos geoespaciales en 3D de la Isla en un solo lugar, el gemelo digital de Singapur muestra todas las partes de la nación en representaciones 3D altamente detalladas, desde edificios hasta árboles individuales y postes de luz (Bentley, 2021).

En Suecia, Estocolmo se comunica de manera efectiva en el desarrollo urbano, Estocolmo planea construir 140.000 apartamentos para el 2030 a fin de cumplir con las proyecciones de crecimiento, se entiende que la comunicación con los ciudadanos es importante para evitar malos entendidos que puedan retrasar la planificación urbana, para lo cual considera un gemelo digital 3D del área metropolitana que abarca unos 500 kilómetros cuadrados que es socializado con los ciudadanos para la elaboración de proyectos urbanos (Bentley, 2021).

En Bélgica, la Agencia de Información Geográfica de Flandes desea mejorar su sistema de mapas de carreteras en 3D para lo cual se contrató a la empresa Image-V para trabajar con imágenes de 65 kilómetros de carretera y producir un mapa actualizado y accesible en la web, parte de los requerimientos es que los ciudadanos puedan acceder al historial y ver cómo cambia la ciudad en el tiempo (Bentley, 2021).

C. Ciudades inteligentes con gemelos digitales en américa latina

La ciudad de Medellín en Colombia el 2021 inicio en el Corregimiento de Santa Elena capturando más de 120.000 imágenes de la ciudad, con este proyecto la Oficina de Registros Públicos de Medellín tiene un soporte que le permitirá tomar decisiones con proyectos futuros de la ciudad, estos modelos en 3D a gran y pequeña escala detallan aspectos que no se lograron con otras metodologías, el gemelo de Medellín cubre 17.500 hectáreas de terreno (Jaramillo, 2023).

En Brasil se implementó un gemelo digital para el sistema de aguas de Joinville, en el estado de Santa Catarina. Joinville. El proyecto de modelado inició el 2020 con el objetivo de crear el gemelo digital del sistema para comprender cómo funciona el sistema de suministro y evaluar las opciones considerando múltiples variables: variabilidad extrema en las precipitaciones, flujos de ríos, tratamiento de agua, almacenamiento en diferentes embalses, demanda de la ciudad y diversas actividades de red (Quiroga, 2022).

En Chile, el gemelo digital Puna Arenas que consiste en un visor territorial integrado en 3D ya está disponible en la web y cuenta con información proporcionada entidades públicas y privadas de la comuna, contiene información para la planificación urbana, como viabilidad, predios fiscales, catastro y construcciones, instalaciones, edificaciones de redes de servicios básicos y factibilidad, plan regional de Ordenamiento territorial y otros (CDT, 2022), para Chile el

uso de un gemelo inteligente es la puerta para alcanzar el estatus de una ciudad inteligente .

En Perú se observa el centro comercial Plaza Santa que cuenta con una extensión de 11.000 metros cuadrados y mas de 9.000 metros cuadrados de espacio en renta distribuido en tres niveles. La Plaza Santa Catalina tiene una amplia oferta de cines, farmacias, restaurantes, tiendas, un gimnasio y 200 espacios de estacionamientos. A fin de facilitar el mantenimiento de toda esta infraestructura se considera un Gemelo Digital que ayuda a reducir la complejidad de los edificios, poder responder a incidentes y facilitar la toma de decisiones (Boviatsou, 2023).

CONCLUSIONES

Como se observó en los casos de estudio un Gemelo Digital proporciona muchos beneficios para controlar, administrar y gestionar el área urbana y responder a la demanda de los ciudadanos como es el caso del crecimiento poblacional. Las aplicaciones pioneras se encuentran por Asia y Europa, en esos contexto se observó que problemas de la ciudad como la alta demanda por el crecimiento poblacional requiere que se pueda prever los servicios básicos como los espacios para nuevas construcciones, también se observó que existe ciudades que al año deben enfrentar situaciones de riesgo como inundaciones, escases de agua y otros recursos vitales, los cuales deben ser pronosticados para tomar los recaudos, establecer espacios que permitan al ciudadano poder interactuar en los proyectos urbanos, todos estos requerimientos han sido abordados mediante los gemelos digitales v se ha obtenido resultados importantes que permiten reducir gasto en los proyectos urbanos priorizando los proyectos que garanticen una mejor calidad de vida del ciudadano. En el caso de América latina las situaciones críticas como las inundaciones y escasez de agua también son abordados con el uso de gemelos digitales como también el control de las áreas de las áreas de la ciudad. En nuestro contexto social no estamos exentos del crecimiento que involucra el garantizar la distribución de poblacional los servicios básicos, el tema de seguridad ciudadana, las inundaciones, la escasez de agua, el tema de la basura y otros, por lo que es de mucha importancia en nuestra sociedad socializar e implementar gemelos digitales que puedan responder a estos problemas de la ciudad.

REFERENCIAS

Abdollahi, H. y Rahmim, A. (2023). digital twins for personalized healthcare: application to radiopharmaceutical. frontiers in biomedical technologies.

Bentley (2021). Cities Driving Sustainable development through digital transformation. advanced infrastructure. https://www.bentley.com/wp-content/uploads/ebook_digital_cities digital transformation en.pdf

Bouskela, M., Casseb, M., Bassi, S., de luca, c. y facchina, m. (2016). la ruta hacia las smart cities, migrando de una gestión tradicional a la ciudad inteligente. bid.

https://publications.iadb.org/es/la-ruta-hacia-las-smart-cities-migrando-de-una-gestion-tradicional-la-ciudad-inteligente

Boviatsou, P. (2023). gemelo digital para mejorar las funciones de un centro comercial en perú. hexagon. https://leica-geosystems.com/es-es/case-studies/reality-capture/creating-the-first-digital-shopping-center-in-peru

CDT (2022). lanzan el primer gemelo digital de chile en punta arenas.

https://www.cdt.cl/lanzan-primer-gemelo-digital-de-chile-en-p unta-arenas/

Dilmegami, C. (2023). 15 digital twin applications/ use cases by industry in 2023. ai multiple. https://research.aimultiple.com/digital-twin-applications/

Gelernter, D. (1991). Mirror Worlds: or the day software puts the universe in a shoebox...how it will happen and what it will mean. oxford university press.

Grieves, M. (2014). digital twin: manufacturingexcellence through virtual factory replication, https://www.researchgate.net/publication/275211047_digital_t win_manufacturing_excellence_through_virtual_factory_replication

Hossain, S. M., Saha, S. K., Banik, S. y Banik T. (2023). a new era of mobility: exploring digital twin applications in autonomous vehicular systems. https://arxiv.org/pdf/2305.16158.pdf

Jaramillo, D. (2023). Medellín, primera ciudad de latinoamérica en tener un gemelo digital. telemedellín. https://telemedellin.tv

Kousi, N., Gkournelos, C., Aivaliotis, S., Giannoulis, C., Michalos, G. y Makris, S. (2019). digital twin for adaptation of robots' behavior in flexible robotic assembly lines. international conference on changeable, agile, reconfigurable and virtual production. www.sciencedirect.com

Martínez-Manso, H. y Delgado-Fernández, T. (2023). Arquitectura básica de diseño de gemelos digitales para la construcción. Revista de Investigación, Desarrollo e Innovación.

http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S 2027-83062022000200327&lang=es

NASA (2015). NASA technology roadmaps ta 12: materials, structures, mechanical systems, and manufacturing. https://www.nasa.gov/sites/default/files/atoms/files/2015_nasa_technology_roadmaps_ta_12_materials_structures_final.pdf

Negri, E., Fumagalli, L. y Macchi, M. (2017). a review of the roles of digital twin in cps-based production systems. 27th international conference on flexible automation and intelligent manufacturing.

https://www.sciencedirect.com/science/article/pii/s2351978917304067

Quiroga, C. P. (2022). aplicando un gemelo digital. https://www.construccionlatinoamericana.com/news/aplicando-un-gemelo-digital/8025040.article

Rodríguez-Rojas, Y.L. (2019). ciudades inteligentes al servicio del ambiente. productividad con smartcities. universidad nacional de colombia. https://repository.unimilitar.edu.co

Savoie C. (s.f.) ai and digital twins in smarty cities. idc government insights. https://cdn.idc.com/ap/smartcities/resources/attachments/ebook-ai_and_digital_twins_in_smart_cities.pdf

ESTADO DEL CONOCIMIENTO: VISUALIZACIÓN DE IMAGEN DIGITAL INMERSIVA Y SU TRATAMIENTO EN LA DIFUSIÓN DEL PATRIMONIO CULTURAL INMUEBLE DE ARTE RUPESTRE CON FINES TURÍSTICOS

Víctor Hugo Aranibar, Ph.D.

v.aranibar@umss.edu.bo

Universidad Mayor de San Simón

Cochabamba - Bolivia

Resumen- Tanto en ciencias de la computación como en las ciencias sociales, existen métodos, rumbos y logros científicos particulares, los que muchas veces guardan relación, aunque el encuentro y correlación de objetivos circunstancialmente equitativos no sean evidentes.

Dentro estas ciencias, puede identificarse al campo de la información gráfica—parte de las ciencias de la computación—y al campo del patrimonio cultural—parte de las ciencias sociales—; como dos campos de conocimiento que requieren encontrarse de forma más tangible para proveerse de insumos transdisciplinares que permitan expandir sus avances y proyectar más el conocimiento científico particular.

Específicamente, el presente estado del conocimiento aborda el tratamiento de la situación en la que se encuentra el acercamiento del campo de la información gráfica respecto al campo del patrimonio cultural, concretamente hacia el arte rupestre. Ahondando en el nivel de conocimiento existente sobre las tecnologías de difusión de contenidos digitales inmersivos y su tratamiento en la gestión del patrimonio cultural inmueble.

Es evidente que la existencia de trabajos científicos dirigidos directamente a los elementos teóricos "tecnología computacional de difusión de información gráfica inmersiva" y "arte rupestre" no existe; sin embargo, se han identificado investigaciones diversas que tangencialmente o a nivel categórico superior, tocan el tema.

Este trabajo recupera planteamientos y aportes sobre el problema de interconexión entre las dimensiones cultura y tecnología computacional; en el marco de las variables difusión de contenidos digitales inmersivos y gestión del patrimonio cultural inmueble.

Palabras clave- Arte rupestre, Gestión cultural digital, TIC.

Abstract- Both in computer science and in the social sciences, there are particular methods, directions and scientific achievements, which are often related, although the encounter and correlation of circumstantially equivalent objectives are not evident.

Within these sciences, the field of graphic information can be identified - part of the computer science - and the field of cultural heritage - part of the social sciences -; as two fields of knowledge that need to be in a more tangible way to provide transdisciplinary inputs that allow them to expand their advances and project more specific scientific knowledge.

Specifically, the present state of knowledge analyzes the treatment of the situation in which the approach of the field of graphic information regarding the field of cultural heritage is found, specifically towards rock art. Delving into the level of existing knowledge about the technologies of diffusion of immersive digital content and its treatment in the management of the real estate cultural heritage.

It is evident that the existence of scientific works directed directly to the theoretical elements "computational technology for the dissemination of immersive graphic information" and "rock art" does not exist; nevertheless, diverse investigations have been identified that tangentially or at a higher categorical level, touch on the subject.

This work recovers approaches and contributions on the problem of interconnection between the dimensions of culture and computational technology; Within the framework of the variables diffusion of immersive digital content and management of the cultural property.

Keywords- Digital cultural management, Rock art, TIC.

1. INTRODUCCIÓN

El alcance de las ciencias de la computación se ha ampliado, los graduales avances tecnológicos abordan cada vez más y diferentes campos disciplinares y aspectos de vida de las personas, en la medida que sus promotores y profesionales están relacionados con ciertos ámbitos de actuación.

Existen varios campos que aún mantienen una tímida relación de desarrollo respecto a las tecnologías computacionales, o quizás otros ni lleguen a eso; lo que está sucediendo con la gestión de patrimonio cultural inmueble no convencional localizado en espacios rurales.

Es importante percibir el trabajo existente entre la relación tecnología computacional de imagen digital inmersiva y difusión del patrimonio cultural de arte rupestre. Como una forma de planteamiento de nuevos retos a un sub-campo de las ciencias de la computación, para identificar más perspectivas que potencien la gestión del patrimonio cultural inmueble.

El presente estado del conocimiento tiene la finalidad de indagar sobre la vanguardia de investigación respecto a visualización de imagen digital inmersiva y su tratamiento en el patrimonio cultural inmueble de arte rupestre. Tratando por un lado el uso de las tecnologías computacionales que constituyen herramientas de trabajo para mostrar mejor el arte (Levis, 2011), y por otro, la condición global del conocimiento ligado a la tecnología computacional, que obliga a empresas, personas y destinos turísticos a funcionar online y con TIC.

Planteamiento de la investigación

La revisión documental e interpretación de aportes identificados en la línea de contrastación con relación al objeto de investigación, desagregada a lo largo de este trabajo; constituye el estado del conocimiento que solventa una tesis doctoral. La elaboración en toda su estructura y apartados, es el fundamento inicial para la comprensión del fenómeno circunscrito en torno al problema y objeto de investigación que a continuación se presentan.

a. Problema de investigación

Rescatando la esencia de la problemática planteada por Aranibar (2017), en la que se aborda la relación entre visualización de imagen digital y arte rupestre, pero dentro un enfoque de investigación ubicado dentro el plano empírico experimental, se extrae que:

Los investigadores y gestores del arte rupestre no conocen lo suficiente sobre el avance de las ciencias de la computación y sus aplicaciones, mientras que los expertos en computación no están interiorizados sobre todas las especificaciones técnicas que hacen al estudio y difusión educativa del arte rupestre con fines turísticos, de socialización y apropiación cultural... (Aranibar, V. 2017).

Dando a entender que existe un aspecto de relación de conocimientos transdisciplinares que no está siendo abordada en términos científicos, limitando las posibilidades que ciertos tipos de bienes de patrimonio cultural tangible inmueble, como el arte rupestre, no estén siendo valorados por sus residentes, tampoco tomados en cuenta por los visitantes que se dirigen a los territorios rurales en busca de una experiencia turística cultural diferente.

Es necesario indagar sobre los aportes de conocimiento que, desde alguna perspectiva, campo disciplinar o ámbito de acción, han abordado la relación entre los dos elementos "tecnologías computacionales de difusión" y "arte rupestre".

Partiendo del problema que:

Existe gran cantidad de sitios de arte rupestre de relevancia patrimonial, distribuidos de forma dispersa en los territorios rurales; desconocidos por la mayoría de las poblaciones de residentes urbanos, y más aún, por los flujos de visitantes que se dirigen a los mismos mediados por una motivación turística. Puesto que no existen mecanismos de difusión educativa ni iniciativas de socialización eficientes y de alcance masivo, que permitan poner en valor los recursos de patrimonio cultural tangible inmueble como el arte rupestre, a pesar de disponer del soporte de tecnologías computacionales idóneas y de dispositivos periféricos personales que permitirían estructurar canales de comunicación convenientes.

El trabajo de Aranibar (2017) mencionado, con su estructura de problema, aborda el ámbito técnico computacional del inconveniente, como respuesta operativa tecnológica específica que haría posible remediar en alguna medida la problemática. No obstante, el problema mayor –planteado ahora como punto de partida del estado del conocimiento—, corresponde a la situación en la que se encuentran los avances científicos, teóricos y empíricos de la relación: visualización de imágenes digitales inmersivas y bienes de patrimonio cultural (arte rupestre); vista como un conjunto de antecedentes que podría orientar en mejor medida la generación de trabajos científicos dirigidos a conseguir efectos favorables respecto al problema de interconexión entre las dimensiones cultura y tecnología computacional.

Es importante abordar el tema conociendo hasta dónde se llegó al respecto, y en qué medida esos aportes y alcances científicos pueden permitir postular una tesis predictiva de solución al problema planteado.

b. Objeto de investigación y línea de contrastación

El objeto de investigación para este trabajo constituye la continuidad y generalización del abordado en la tesis de Aranibar (2017) "Procesamiento de imágenes computacionales para compresión en entornos de realidad virtual: aplicación en arte rupestre para fines de turísticos y de

apropiación cultural local"; continuidad porque uno de los elementos del objeto de investigación aún concierne a tecnologías computacionales de visualización de imágenes digitales inmersivas, y generalización, en sentido que el otro elemento sube de nivel y se remite a la gestión del patrimonio cultural tangible inmueble del arte rupestre.

Por lo tanto, el objeto de investigación es:

Tecnologías computacionales de difusión de contenidos digitales inmersivos (variable dependiente), como herramientas de gestión del patrimonio cultural tangible inmueble del arte rupestre (variable independiente). Considerando que los mercados turísticos funcionan online y tanto residentes como visitantes son concomitantes a dicho funcionamiento

c. Cuestionamiento

Mientras las tecnologías computacionales de visualización de imágenes digitales tienen constante avance, tecnificación y posibilidades de prestación, los bienes de patrimonio cultural de arte rupestre tienden a postergar cada vez más su difusión y socialización.

Ya la tesis de Aranibar (2017) planteó una preocupación similar, en sentido que operativamente, ciertas tecnologías computacionales para visualización inmersiva y compresión digital de imágenes, pueden ser utilizadas para la difusión del arte rupestre; habiéndo demostrado tal situación. Sin embargo, la temática ahora viene a cuestionar un ámbito de indagación superior, dirigido a adoptar una postura crítica valorativa que dé pautas de conocimiento para un posterior tratamiento de investigación dirigido a la búsqueda de efectos de mayor alcance y amplia utilidad social y patrimonial.

Entonces:

¿En qué medida y bajo qué criterios, las experiencias de aplicación de conocimientos científicos de tecnologías computacionales de visualización de imágenes digitales, en temática de patrimonio cultural tangible inmueble; posibilitarían la estructuración de mecanismos de gestión de sitios de patrimonio de arte rupestre?

Parámetros y caracterización de la muestra documental

Por una parte, el desarrollo de las tecnologías computacionales en sus diferentes áreas y matices, avanza y cambia constantemente. En el campo de las ciencias de la computación el plazo inmediato es muy dinámico, razón por la que su análisis y tratamiento científico sigue un comportamiento acorde a dicho tipo de proceso.

Empero, aunque la investigación científica intenta trabajar a un ritmo de vanguardia tan dinámico, siempre existen rezagos, debido a que su análisis es más profundo y pormenorizado, implicando periodos de reflexión más largos que los conllevados en el desarrollo de las tecnologías computacionales.

Considerando que ésta indagación documental afronta ambos criterios para el desarrollo de su contenido, se asumen como parámetros de muestra documental los siguientes:

- Recurrencia principal a documentación trabajada con relación directa a las dos variables asumidas en el objeto de investigación, o en su defecto, a las categorías teóricas superiores que las contienen;
- Haciendo lo propio con documentos que abordan particularmente solo la variable dependiente (tecnologías computacionales de visualización de imágenes digitales).
- Revisión de trabajos de investigación y/o aplicación de la variable dependiente sobre la independiente, en el orden de nivel de trabajo explicativo y predictivo únicamente;
- Consideración del campo científico en el ámbito global –mundial–, con inclinación a trabajos elaborados en idioma castellano (prioritario) e inglés (ampliatorio);
- Estableciendo focos en documentos correspondientes a los últimos cuatro años fundamentalmente (2015-2019);
- Definición de un proceso metodológico de identificación, selección y tratamiento de documentos de consulta localizados únicamente en Internet (efecto de los dos criterios planteados en este apartado).

2 MATERIALES Y MÉTODOS

Con el propósito de proveerse de mayores pautas al conocer y adentrarse en nuevos entendimientos, abordajes y experiencias sobre el objeto de investigación; la estrategia de revisión documental del estado del conocimiento se sustenta metodológicamente en el método heurístico en primera instancia, y en el hermenéutico en segunda instancia.

El método heurístico aplicado con las técnicas de búsqueda o descubrimiento y selección documental bibliográfica; mientras que el hermenéutico corresponde a las técnicas de categorización, organización y fundamentalmente a la integración de la información y construcción del contenido. En otras palabras, la heurística permitió trabajar la etapa de lectura, mientras que la hermenéutica hizo posible concretar la etapa de escritura del estado del conocimiento.

Técnic a	Localiza ción de la técnica	Condición de aplicación de la técnica	Subprod uctos
Búsque da bibliogr áfica	Internet	 Uso de palabras clave Construcción de descriptores simples Construcción de descriptores compuestos 	Guías de búsqueda y patrones de identifica ción bibliográ fica

		- Uso de idioma castellano - Uso de idioma	
Selecci ón bibliogr áfica	Internet	ingles - Lectura documental rápida - Identificación de palabras clave - Descarga de documentos - Referenciación bibliográfica rápida	Banco digital de documen tación bibliográ fica
Categor ización docume ntal	Gabinete	 Establecimiento de indicadores Definición interna de categorías de trabajo para el contenido Lectura bibliográfica inicial detallada 	Estructur a y orden del estado del conocimi ento
Organiz ación docume ntal	Gabinete	- Disposición de fuentes de información - Lectura bibliográfica profunda y detallada - Extracción de mensajes bibliográficos - Proceso de escritura	Estado del conocimi ento estructur ado
Integrac ión docume ntal	Gabinete	- Redacción por categorías y apartados - Revisión y balance del desarrollo del contenido - Finalidad - Coherencia - Fidelidad - Integralidad - Comprensión -Redacción del inicio y cierre	Estado del conocimi ento concreta do

Tabla 1: Recursos de la estrategia metodológica metodológica
Fuente: Elaboración propia.

 La búsqueda bibliográfica, consistió principalmente en la deconstrucción del objeto de investigación; abstrayendo los elementos teóricos de tecnologías computacionales y visualización de imágenes, por un lado, y gestión del patrimonio cultural y arte rupestre por otro, en torno a los cuales fue posible aplicar las condiciones de la técnica en Internet. Primer tamiz para conseguir identificar fuentes de información de interés hacia el objeto en la web.

- La selección bibliográfica, permitió decantar aquella información específica para construir el contenido del estado del conocimiento, en base a la deconstrucción del objeto de investigación; segundo tamiz. El banco digital logrado constituyó la base documental para la realización de este trabajo.
- categorización documental, mediante La la deconstrucción los diferentes de documentos seleccionados, posibilitó la extracción de determinados indicadores de equivalencia con los elementos: tecnologías computacionales, visualización de imágenes digitales, gestión del patrimonio cultural y arte rupestre; que seguidamente categorizados, permitieron conformar una estructura metodológica para ordenar el estado del conocimiento.
- La organización documental, trabajada en base a la estructura lograda, permitió reconstruir el objeto de investigación nuevamente en torno a las dos variables; solamente que, en este caso, bajo un análisis categórico extraído de la documentación bibliográfica seleccionada y tratada.
- La integración documental, momento conclusivo que permitió disponer del estado de conocimiento para el objeto de investigación y el cuestionamiento planteado.

3. DESARROLLO

Para el desarrollo del contenido se asumen como apartados: los problemas de investigación abordados, las aproximaciones metodológicas de los trabajos revisados, títulos, enfoques epistemológicos y comunidades científicas que trabajaron las investigaciones, la validación de sus conclusiones respecto al presente estado del conocimiento, y finalmente, los resultados de conocimiento y desarrollo tecnológico a los que arribaron.

3.1. Problemas de investigación abordados por los trabajos revisados

Habiéndose revisado documentos científicos y trabajos de investigación, identificando diferentes condiciones de problemas y de necesidades respecto a temáticas relacionadas con gestión de patrimonio cultural, uso de las tecnologías digitales para socialización de información gráfica, procesos de puesta en valor de recursos culturales y arte rupestre, TIC, web e Internet en procesos de difusión; se ha podido categorizar los problemas abordados, agrupándolos en cuatro concentradores problemáticos.

3.1.1. Desconocimiento del concepto Big Data en la gestión del patrimonio cultural

Con la presencia de Internet y la web, existe una abrumadora cantidad de información disponible a escala global, que origina una situación de "infoxicación"; asimismo, se es consciente que sus diferentes audiencias y públicos -usuarios-, no pueden llegar a revisar gran parte de ésta, e incluso, muchos ni se constatan de la existencia de contenidos con temáticas singulares como las de patrimonio cultural (Sedeño, 2016).

Ante las nuevas tecnologías y la conectividad, la difusión del arte rupestre debe reconocer el enunciado "no se valora lo que no se conoce", poniendo en evidencia la necesidad indispensable, de existencia de un propio repositorio de información, que promueva su conocimiento y difusión por todo tipo de públicos y en las distintas áreas de aprendizaje disciplinar que contiene; así también, que garantice su manejo sostenible y preservación (Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y., 2016, pp. 102-103).

Junto a estas situaciones, existe también la necesidad de conseguir mayor participación de las personas en los procesos de gestión cultural –visitantes, y residentes locales a los bienes de patrimonio principalmente–; reconociendo la existencia de contextos con actitudes de ciudadanía global respecto al uso de TIC, que les permitiría acercarse más al patrimonio cultural en todas sus formas de manifestación (Cfr. Sedeño, 2016).

3.1.2. Propensión existencial de los bienes de patrimonio cultural y arte rupestre

Álvarez (2014) plantea que todos los bienes de patrimonio cultural inmueble presentes en los espacios rurales –edificaciones–, tienden a desaparecer; porque se encuentran dispersos y con apariencia de ruina, por falta de intervención en muchos de los casos.

La mayoría de los sitios arqueológicos se encuentran en lugares remotos, en territorios desestructurados y de difícil acceso –fuera del alcance de las redes de comunicación y articulación—; desprovistos de sistemas de cartografía civil o disciplinar especializada que constituya material base para su gestión. Dándose una situación de des-utilización de los sistemas de teledetección espacial; recursos tecnológicos que permiten crear cartografía temática, disponen de metodologías sencillas y gratuitas, y están al alcance de todos mediante la web (Vid. Farjas, M., Domínguez, J., Picazo, A., y Pérez, C., 2015, p. 269).

Aunque de forma unitaria los bienes o sitios patrimoniales dispersos y alejados pueden no ser representativos —como un sitio arqueológico—, pero conectándose los mediante el turismo seguramente se harán muy potenciales (Álvarez, 2014); convencidos que hay recursos de patrimonio cultural de carácter invaluable.

Los sitios de arte rupestre son un claro recurso de patrimonio necesario de gestión; porque sus representaciones corresponden al indicio más antiguo de intentos de comunicación humana (Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y., 2016).

Sin embargo, existen también varios sitios contenedores de arte rupestre en el mundo, que han tenido que cerrarse al público por situaciones de falta de medidas de conservación; desatención que en repetidos casos se debe a la alejada localización que dificulta su intervención. Un ejemplo de sitio de arte rupestre cerrado por ponerse en riesgo su conservación, es la Cueva de Ekain, que desde el año 1969 no permite visitas, no obstante, de contar con la declaratoria de Patrimonio de la Humanidad ante la UNESCO (Irekia 2016).

Otro inconveniente es la falta de iniciativas de difusión. Hay un problema de comunicación entre los científicos que cada vez hacen nuevos descubrimientos culturales, y la sociedad que requiere ser informada; desaprovechándose los canales digitales y marketing digital, como medios masivos para mostrar los bienes culturales con fuerte interés social y turístico.

Las iniciativas de difusión de patrimonio requieren involucrar a sus pobladores locales, enriqueciendo el contenido con su experiencia de vida al lado de los bienes culturales. Igualmente, para hacer que los habitantes locales se apropien de sus recursos y reafirman los mensajes de comunicación a difundir, mejorando la información y contenidos (Vid. Rodríguez, F. y Beltrán, C., 2017). Es importante dejar de sub valorar el aporte que los habitantes locales a los bienes de patrimonio pueden hacer en los procesos de construcción de contenidos y conocimiento; en muchos casos cuando se crean contenidos, el trabajo no recoge la memoria social e histórica local, desaprovechando potenciales fuentes de información e incurriendo en la des-democratización del proceso (Cfr. Fritzler, M., 2017).

3.1.3. Internet y TIC como canales de difusión del patrimonio cultural

El cambio en la forma de ver las acciones respecto a la difusión del patrimonio cultural es fundamental. Tal es el caso del paso de las estructuras de bibliotecas físicas a formatos virtuales –aunque con una organización incipiente–, que pone en evidencia la necesidad de implementar iniciativas que, apoyadas en el manejo de Tecnologías de Información y Comunicación TIC, permiten transiciones y procesos de socialización de mayor magnitud y con generación de impactos positivos más profundos (Díaz, N., 2015).

La gestión del patrimonio en el largo plazo es posible con el uso de las TIC. Es importante pensar en utilizar mecanismos factibles y sustentables que permitan la constante difusión del patrimonio cultural. Existen periodos de crisis económica durante los cuales el trabajo de gestión cultural es normalmente postergado, y en varios casos seguramente relegado y olvidado (Cfr. Balart, Ll. y Menchon, J., 2015).

Es necesario impulsar e innovar en los procesos de difusión del arte rupestre; tomar en cuenta los productos culturales a mostrar y ofertar, y reconocer la heterogeneidad de públicos posibles a constituirse en observadores y/o visitantes.

Muchos sitios turísticos son subvalorados a causa de su desconocimiento o por la falta de difusión de información persuasiva; no mostrándose, y haciendo que no se den a conocer a diferentes audiencias que seguramente estarían interesadas en acercarse a los mismos (Coma, J., Elorrieta, B., y Torres, A., 2016).

Hay un profundo desaprovechamiento de las tecnológicas de visualización computarizada en temas de cultura y patrimonio; la incorporación de las TIC en la difusión de la cultura es una necesidad latente y de acción recurrente. Repensar en la construcción de páginas web haciéndolas más atrayentes, creación de aplicaciones móviles para alcanzar variados públicos, utilización de visualización inmersiva, ... son importantes pautas de cambio.

Por ejemplo, para la estructuración de páginas web dirigidas a la gestión del patrimonio, es importante antes parametrizar el proceso, viendo a detalle las audiencias de usuarios. Asimismo, para la creación de aplicaciones móviles utilizando herramientas inmersivas y enfocando esfuerzos hacia la divulgación de patrimonio cultural, es determinante recurrir a un método bien estudiado, sabiendo que hay usuarios jóvenes que no conocen su territorio ni su valor cultural, pero manejan bien sus dispositivos móviles (Zapata, M., 2016, p. 35).

3.1.4. Turismo 2.0 y gestión del patrimonio cultural

Aparentemente, para las poblaciones alejadas, la percepción unitaria de un bien de patrimonio cultural localizado en su territorio, no les representa gran importancia —les es habitual—. Para los pobladores rurales el patrimonio cultural no es un recurso fundamental en sus sistemas de producción y articulación, por lo que, no reaccionan ni toman decisiones de protección y difusión al respecto (Álvarez, 2014).

Por lo tanto, se plantea la necesidad que los productos y destinos turísticos se sumen al mundo de las TIC; que todos aquellos bienes que constituyen patrimonio, estén conectados con la web, y utilicen sus recursos y herramientas para llegar a todo el mundo. El territorio turístico que no esté online, tenderá a desaparecer, efecto del mercado turístico global que exige la presencia en el nuevo contexto virtual (Cfr. Caro, J., Luque, A., y Zayas B., 2014).

La gestión cultural integral del arte rupestre depende del uso de las TIC, de participar del mercado virtual global, y de la suma de potencialidades y esfuerzos para la creación de contenidos y construcción de recursos digitales.

3.2. Aproximaciones metodológicas de las investigaciones indagadas

Cada uno de los trabajos revisados permite identificar ciertos elementos y puntualizaciones que guardan relación con el objeto de investigación del presente estado del conocimiento; que en conjunto permiten estructurar un cuerpo de aproximaciones metodológicas útiles para orientar los planteamientos posteriores, en respuesta al problema inicial.

Las diferentes investigaciones consultadas y las diversas maneras de abordar su trabajo, procederes y acciones, se sistematizan en base a los seis acápites de aproximación metodológica que a continuación se presenta:

3.2.1. Actores locales y bienes de patrimonio cultural

Interconectando la localización de bienes de patrimonio y dándole mayor sentido al sumar potencialidades para crear productos culturales concatenados posibles a difundirse mediante el uso de TIC, es necesario trabajar realizando acciones con la gente local a dichos bienes. Así se hizo en un territorio en España mediante jornadas de sensibilización y talleres de capacitación a poblaciones locales a los bienes culturales, estructurando la denomina Muralla Digital, que hoy en día constituye una red de sitios de patrimonio con condiciones de difusión y consiguiente visita turística (Vid. Álvarez, 2014).

Es importante que las poblaciones locales a los bienes de patrimonio estén empapadas del proceso de gestión cultural, aportando en cada momento, desde la planeación hasta el seguimiento; siendo este último momento en el que más evidente se hace su participación.

Hay casos en los que existen guías que orientan la visita de sitios de arte rupestre, a pesar que estos no tienen condiciones de infraestructura ni soporte de estructura que apoye la permanencia de los visitantes; asimismo, donde sus centros de interpretación no asumen estrategias acordes a la heterogeneidad y hábitos de los nuevos públicos (Rey, J., 2012).

Suárez (2017), plantea que, cuando se trabaja con la gente local a los bienes de patrimonio, siempre existirán grupos contradictorios. Para eso, es sutil identificar los niveles de poder y de interés que reportan los grupos o personas, dentro toda la población involucrada; conjugando niveles de interés y de influencia, como se ve gráficamente en la Figura 1.

Figura 1: Fuerzas de interés y poder de la ciudadanía local en gestión del patrimonio. Fuente: Bianca Suárez, 2017

Fuente: Elaboración propia.

3.2.2. Función educativa de la difusión del patrimonio cultural

El patrimonio cultural tiene un fuerte componente educativo, son el vestigio que con solo observarlos es posible aprender. La difusión de material visual sobre bienes de patrimonio, puede causar impactos de aprendizaje favorables en audiencias a las que se exponga.

La función educativa de visualización de imágenes digitales de patrimonio es importante si se trabaja con nuevas formas de presentación de la información, las que vayan a mejorar la percepción y retención de la misma, como es posible con el uso de la realidad aumentada; aspecto comprobado por Sedeño (2016), a través de un trabajo de experimentación que ha reportado resultados con valores estadísticos importantes al respecto.

Para la generación de documentación digital sobre patrimonio cultural, es necesario disponer de material en formato digital y en distintas versiones de calidad y tamaño, también de un software que permita su catalogación técnica y resguardo, finalmente, la posibilidad de uso de canales TIC como medios de comunicación de acceso eficiente para visitantes virtuales y usuarios de plataformas web y aplicaciones móviles (Cfr. Irala, P., 2013).

3.2.3. TIC y gestión del patrimonio cultural

Las TIC son el instrumento más potente para la comunicación de contenidos globalmente, para poner en valor cualquier producto. La relación TIC y gestión del patrimonio cultural, se puede identificar en la postura de Bonifaz y Molina (2015), que dicen: si no se muestran experiencias de su aplicación y utilidad, nunca se dará importancia ni hará nada al respecto.

Cuando se crea un planteamiento de gestión cultural basado en TIC –contenido digital, realidad virtual, realidad aumentada, juegos serios—, es importante determinar un concepto de combinación tecnológica y de recursos a utilizarse; lo que es posible organizando tres ejes de trabajo en el proceso: un marco de referencia, una matriz de referencia y la guía de aplicación, además de otras actividades que resultan transversales. Tomando en cuenta también que los tipos de contenidos utilizados son condicionados por los dispositivos periféricos por los que acceden los usuarios (Cfr. Zapata, M., 2016, pp. 41-45).

Por ejemplo, la aplicación de realidad virtual VR y realidad aumentada AR, como herramientas de apoyo en la gestión del patrimonio cultural, puede ser útil para:

La creación de recursos educativos para la historia y la cultura; La reconstrucción de monumentos históricos que ya no existen o existen sólo parcialmente; Visualización de escenas desde puntos de vista imposibles en el mundo real debido a su tamaño o problemas de accesibilidad; Interactuar con los objetos sin riesgo de daños, y proporcionar el turismo virtual y exposiciones en museos virtuales (Bonifaz, E., y Molina, F., 2015).

Turismo, cultura y TIC suponen una trilogía determinante para la socialización del patrimonio cultural en la actualidad; en la que el uso de blogs, foros, redes sociales, motores de búsqueda, sistemas de recomendación y de reputación online, códigos QR, ... son fundamentales (Vid. Caro, J., Luque, A., y Zayas B., 2014).

De acuerdo a Caro, Luque y Zayas (2014), es importante que la difusión del patrimonio cultural mediante las TIC deba centrarse en cuatro áreas de trabajo, siguiendo la línea sugerida por la Conference on Cultural Heritage and New Technologies CHNT:

- → Gestión, referida a la producción de contenidos internos a los bienes de patrimonio,
- → Web, que implica el trabajo en redes sociales,
- → GIS, dirigida a su geolocalización DTM y GIS, y
- → 3D, relacionada directamente al manejo de VR y AR.

Considerando a la vez tres fases de difusión: antes de la visita, como fase de anticipación y estrategia de promoción; durante la visita, como fase experiencial y de enriquecimiento de la experiencia; finalmente, después de la visita, como fase de recreación, que puede proveer mayor información posterior a la visita turística (Ibid.).

De la misma manera, en tema de arte rupestre, las acciones de incorporación de recursos y herramientas TIC en su gestión deben formar parte de todo un plan de gestión cultural (Martí, A., 2012); tomando en cuenta que solo la AR brinda posibilidades de difusión atractivas y de alcance masivo (Bonifaz, E., y Molina, F., 2015).

De igual importancia, en la gestión de recursos turísticos –asumidos como bienes de patrimonio— es fundamental incorporar el concepto de destinos turísticos inteligentes; apoyarse y servirse de las TIC en la definición de estrategias y en su proceso de planificación (Coma, J., Elorrieta, B., y Torres, A., 2016).

Dentro del trabajo de gestión del patrimonio cultural apoyado en TIC hay varias alternativas —con diferentes especificidades— para articular estrategias y esfuerzos de alcance, dirigidas principalmente para su implementación mediante la web o dispositivos móviles. Para el caso de los dispositivos móviles, la gestión del patrimonio se da por medio de aplicaciones. La evaluación de una aplicación de dispositivo móvil a bien de un usuario, se aborda mediante tres indicadores: usabilidad, percepción de contenido —que puede establecerse con AR o VR— y utilidad e importancia que les reporta (Zapata, M., 2016, p. 52).

En la búsqueda de alternativas TIC para mostrar el patrimonio, la AR se presenta como una opción que puede ser utilizada en distintas plataformas; siendo evidente su recurrencia principalmente para aplicaciones móviles Smartphone y Tablet. La finalidad de uso de la AR es asimilada en sentido de mejorar la interacción dentro ambientes reales —lugar patrimonial— entre usuarios y objetos virtuales creados (Sic. Bonifaz, E., y Molina, F., 2015). No obstante, la VR corresponde a una alternativa fuertemente inmersiva, que va ser utilizada cuando sea preciso dar mayor realismo a la

experiencia; sea mediante la web o a través de dispositivos móviles Smartphone.

También existe la posibilidad de trabajar con la concreción los Sistemas de Realidad Mixta –AR y VR–, permitiendo superponer modelos virtuales en la misma realidad –lugar patrimonial–; traducible en una especie de hologramas que aparecen en el mundo real (Bonifaz, E., y Molina, F., 2015).

Además, la utilización de marcadores –tags de texto o imagen– que sean reconocidos por los recursos provistos en los dispositivos Smartphone o Tablet –GPS y cámara fotográfica principalmente–, que son manipulados a diario por los ciudadanos digitales; reportan resultados efectivos en el proceso de gestión del patrimonio (Ibid.). Adicionalmente a los marcadores, el uso de fuentes y medios de información enlazados a otros contenidos de navegación en Internet, optimizan la narratividad; aunque en este incremento son trascendentales los indicadores de: usabilidad, accesibilidad, facilidad de navegación, distintos niveles de interactividad, actualización de contenidos e interfaces –color, tipografía, imágenes– (Cfr. Irala, P., 2013).

Una herramienta poderosa para servirse de la AR y del recurso GPS de los dispositivos Smartphone, es el uso de la teledetección cartográfica, que no solo proporciona la ubicación geográfica de un bien de patrimonio, también permite visualizar la reconstrucción de lo que sucedió en torno a los recursos culturales, y sus hallazgos relacionados con sitios de interés circundantes (Farjas, M., Domínguez, J., Picazo, A., y Pérez, C., 2015).

3.2.4. Narrativa transmedia y gestión del patrimonio cultural

En trabajos de gestión del patrimonio mediante el uso de Internet y la web, reconociendo su trascendencia educativa; indirectamente se hace latente la necesidad de disposición de contenidos multiplataforma con integración multimedia (Rodríguez, F. y Beltrán, C., 2017).

El uso de técnicas narrativas en las tareas de creación de contenidos para la visualización de datos, imágenes y/o interacciones, permite desarrollar verdaderos softwares educativos; proceso altamente mejorado si la construcción de la información de respaldo tiene carácter colectivo –participación ampliada en la generación de aportes al contenido—; y más si dicha apertura es promovida y controlada por alguna dependencia pública relacionada con cultura, e incorpora como premisa su inscripción en Open Data (Cfr. Sedeño, 2016).

"Aquí, las narrativas transmedia cumplen un papel fundamental en procesos de lectura de entorno de adentro hacia afuera" (Rodríguez, F. y Beltrán, C., 2017, p. 39); constituyen mecanismos para dotar de mayor significado a los contenidos al recuperarse la historia oral y el pensamiento colectivo, primeramente, de los habitantes circundantes a los bienes de patrimonio y después de los diferentes públicos a los que permite acceder la conectividad.

De esta manera, la visualización de datos con significado resulta una forma efectiva de comunicación, para lo cual, también se considera indispensable la aplicación de determinadas técnicas de selección, procesamiento y para poner a disposición de una audiencia los contenidos con toda la información (Cfr. Sedeño, 2016).

Operativamente, en comunicación mediante narrativas transmedia, la creación de un documental web sobre el patrimonio –narrativa no lineal–, y su exposición ante el público local que induzca su participación, permite la co-creación de contenidos; puesto que ellos cumplen un rol fundamental en el trasfondo de los mismos, permitiéndoles de esta forma pasar a ser también creadores de los mismos (Cfr. Rodríguez, F. y Beltrán, C., 2017).

A nivel de aportes desde afuera hacía adentro, las narraciones pregrabadas sincronizadas con la interacción virtual de los usuarios, favorece el enriquecimiento de los contenidos y la posibilidad de obtención de mejores resultados posteriores (Cfr. Bonifaz, E., y Molina, F., 2015); refiriéndose a resultados de persuasión y visita turística, por ejemplo.

La narrativa transmedia se basa complementa en Internet, Según Sánchez y López (2005) "entendiendo Internet como la posibilidad de extender algunos valores de la democracia como la libertad, la igualdad y la participación" (Apud. Rodríguez, F. y Beltrán, C., 2017). Se trata de la democratización de la producción de contenidos para la gestión del patrimonio cultural. Narrativa transmedia resulta algo cómo obtener resultados metodológicamente desde una óptica didáctica de Aprendizaje Basado en Proyectos (Fritzler, M., 2017).

3.2.5. TIC y difusión de contenidos de patrimonio cultural

En gestión de patrimonio –recursos turísticos–, el uso de TIC no debe reducirse a la simple finalidad informativa, sino ser también experiencial; generar espacios virtuales que satisfagan el impulso de viaje del usuario-visitante impulsará el consiguiente consumo de los productos turísticos (Coma, J., Elorrieta, B., y Torres, A., 2016).

La web 2.0 y la tecnología móvil son recursos idóneos para la difusión del patrimonio cultural, implicando su manejo un cambio radical en la forma de facilitar el acceso a la información (Vid. Caro, J., Luque, A., y Zayas B., 2015). Solo la digitalización de imágenes de los sitios de arte rupestre permitiría estructurar contenidos para plataformas web y aplicaciones móviles, haciendo posible trasladar información pertinente y diversa a toda la ciudadanía digital (Irekia 2016). De esta manera, Caro, Luque y Zayas (2014) proponen que el uso de TIC en la difusión del patrimonio cultural, debe guiarse en dos parámetros:

 Redes sociales: concibiéndolas como espacios o lugares virtuales de encuentro y oportunidad de llegada a millones de usuarios, quienes a la vez exponen sus experiencias de viaje, generando una forma de promoción directa e WOM (Word Of Mouth); buscando amplia presencia en sus sitios y páginas utilizando estrategias de penetración para conseguir mayores seguidores, que es un factor clave.

• Sistemas de geolocalización: representan un recurso básico y necesario para la promoción y puesta en valor del patrimonio cultural. Para esto, utilizando mapas de Google, localizando POI (Point Of Interest), mostrando cómo llegar a los bienes, enlazándose los contenidos con otros sitios de sistemas de reputación online como Foursquare y Tripadvisor, aplicando modelación digital de terreno, 3D; también incluyéndose en bases de datos como ArqueoTur, que registra información de yacimientos arqueológicos en un sistema cartográfico.

Como complementos a redes sociales y sistemas de geolocalización, para la socialización del patrimonio cultural; están las visitas virtuales auto-guiadas gratuitas y las guías de patrimonio que muestren explicaciones didácticas en vivo mediante recursos de Internet. En todo esto es determinante la incorporación de temáticas que llamen la atención, como lo hacen las rutas temáticas de época romana, medieval, modernista, etc., aspectos que posteriormente incentiven visitas reales (Vid. Balart, Ll. y Menchon, J. 2015, pp. 603-604).

En otro nivel de trabajo están los contenidos 3D, VR y AR, ajustables mediante la creación de Apps para dispositivos móviles, que permiten crear modelos realistas que enriquecen la fotografía; los que también pueden estar conectados con sistemas de geoposicionamiento y conectividad mediante Internet. Todas éstas son aplicaciones con más futuro, aunque implican costos más elevados en muchos casos (Caro, J., Luque, A., y Zayas B., 2014).

Detrás de 3D, VR o AR está la manipulación de información gráfica, la digitalización de imágenes en súper alta resolución o de gigapixel. La alta calidad de imágenes permite al observador adentrarse en el contenido y hacer acercamientos que permiten apreciar detalles inéditos de las pinturas rupestres; enriqueciéndose la experiencia con la adición de contenidos explicativos y vistas panorámicas interactivas como la de 360° (Vid. Irekia 2016).

Afrontando lo complejo del tema desde lo documental dentro espacios virtuales –como es la gestión del patrimonio cultural–, será importante incorporar servicios de mensajería, consulta y material de descarga, para atender apreciaciones y enriquecer la presencia en Internet (Díaz, N., 2013, p. 118). Se trata de sobrepasar las páginas web e incursionar en redes sociales, usos de Smartphone, e inclusive, recurrir también a videojuegos –juegos serios–, que son otra forma de socializar el patrimonio cultural (Palau, L., 2016).

Son varias apreciaciones y alternativas a la vez, por consiguiente, para tener consistencia en los procesos de construcción de productos digitales para la difusión de contenidos, es necesario respetar los criterios de: factibilidad, implementación, medición de impactos y sostenibilidad (Díaz, N., 2015).

3.2.6. Contenidos digitales para gestión del patrimonio cultural - arte rupestre

Cuando se recurre a la presencia en la web para la gestión del arte rupestre, es posible la incorporación de diversa información semántica que es implícita al bien cultural; como la antropológica, arqueológica, paleontológica, etnológica, etc. (Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y., 2016, pp. 101-102). En las tareas de creación de contenido digital para gestión de patrimonio, son importantes las narrativas transmedia; con el apoyo de las poblaciones locales a los bienes, lo que conlleva la realización de talleres y jornadas de trabajo con dicha gente –tema visto anteriormente en este mismo apartado—; estas actividades permiten generar fundamentos para la construcción de contenidos digitales interactivos y audiovisuales que muestran el patrimonio cultural de forma más viva (Vid. Álvarez, 2014).

Según Diaz (2015), es importante construir espacios virtuales en los que la organización de la producción de información y la consulta de contenidos, consideren las preferencias informáticas de los usuarios; los proyectos relacionados con digitalización y difusión del patrimonio no deben abordarse como simples sitios web.

La construcción de sitios virtuales o web, requiere invariablemente de disponer de recursos multimedia en distintos formatos, por medio de los cuales y la virtualización, se den experiencias intuitivas y realistas a los usuarios y visitantes (Bonifaz, E., y Molina, F., 2015). Para este fin –construcción de contenidos digitales—, resulta incrementar la utilización de diferentes artefactos narrativos, como imágenes, videos, podcasts, etc. (Fritzler, M., 2017).

Cuando se incorpora información contextual en la creación de contenidos digitales de arte rupestre para su difusión—información que va más allá del bien en cuestión—, es mejor abordárselos desde un carácter ontológico y no semántico; haciéndolos más atrayentes, permisibles para la entrega de datos más abiertos y enlazables que admiten consultas; de esta forma, las tareas de creación de contenidos contextuales no limitan su fundamentación (Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y., 2016).

Al momento de crear contenidos para la difusión del patrimonio cultural –considerando ya información específica al bien y al contexto–, hay que diferenciar la información a mostrar, reconociendo la concerniente a conocimiento científico y al de divulgación, sabiendo que no todos los públicos son especializados y la comunicación pueda llegar a ser no efectiva en algunos casos (Palau, L., 2016).

Por ejemplo, se da el caso que en un estudio empírico para la difusión de la arqueología en España, respecto al tipo y formato de contenido con mayor atractivo para mostrar dentro su gestión cultural; se comprobó vía la experimentación, que el uso de fotografía genérica —en condición estándar, estática, como se las obtuvo— no tiene tanto nivel de atracción y alcance para públicos convencionales, en comparación con los

videos, textos, artículos o fotografías que muestran el trabajo técnico de campo (Cfr. Palau, L., 2016, p. 28).

Cuando se trata de contenido digital se trata de información; entonces, es preciso tomar en cuenta también la seguridad de la misma, siendo que su uso, difusión y resguardo, estén acordes a normativas técnicas de la administración pública respectiva (Cfr. Díaz, N., 2013).

3.3. Títulos, enfoques epistemológicos predominantes y comunidad de investigación

Títulos revisados	Aproxi	Objeto y/o	Comunid
	mación al	unidades de	ad académic
	enfoqu	investigaci	acaucinic
	e	ón	
	epistem		
	ológico		
Muralla digital, aplicación de las TIC a la puesta en valor del patrimonio	Cualitat ivo históric o-herme néutico	Recursos TIC de la web	Ciencias de la computaci ón, informaci
cultural; caso de España; 2014			ón gráfica
La visualización de datos como recurso social: posibilidades educativas y activismo; 2016	Cuantit ativo empíric o-induct ivo	Recursos TIC educativos y apropiación por colectivos sociales	Ciencias de la computaci ón, visualizac ión de datos
Aplicaciones tecnológicas para la promoción de recursos culturales; 2014	Cuantit ativo racional ista-ded uctivo	Recursos TIC e Internet para promoción de patrimonio cultural	Ciencias de la computaci ón, difusión y promoció n
El Gobierno Vasco digitaliza en súper-alta resolución la Cueva de Ekain Patrimonio Mundial de la UNESCO; 2016	Cualitat ivo racional ista-ded uctivo	Captura de imágenes de arte rupestre con luz infrarroja y su digitalizaci ón	Conserva ción de patrimoni o cultural, digitalizac ión de obras de arte
La incidencia de las TIC en destinos turísticos de la montaña española. Un análisis de casos; 2016	Cualitat ivo empíric o-analíti co	TIC e incidencia en gestión de destinos turísticos	Campo del turismo, gestión de destinos turísticos

Ontología para las Manifestaciones Rupestres en Venezuela. Hacia el Desarrollo de una Plataforma para la Preservación Digital; 2016	Cuantit ativo racional ista-ded uctivo	Digitalizaci ón de informació n ontológica de arte rupestre, para uso científico y de demanda turística	Arqueolo gía, manejo de recursos de Internet y web
Modernización de la gestión del patrimonio cultural peruano, en archivos y bibliotecas; aplicando las Tecnologías de la Información y la Comunicación TIC; 2015	Cuantit ativo empíric o-induct ivo	Digitalizaci ón de informació n documental , para incorporaci ón y consulta en la web	Patrimoni o cultural, biblioteca s
Gestión Municipal del Patrimonio Mundial en Tiempo de Crisis: Tarragona; 2015	Cuantit ativo racional ista-ded uctivo	Gestión del patrimonio frente a recursos económicos escasos	Conserva ción de patrimoni o cultural, gestión económic a
La utilización de recursos Open Data en procesos de documentación cartográfica de bajo coste sobre territorios no estructurados de interés arqueológico mediante imágenes Landsat 8: Área de Mleiha-Khor Fakkan (E.U.A.); 2015	Cuantit ativo racional ista-ded uctivo	Cartografía para reconstrucc ión de procesos de formación de patrimonio cultural	Ciencias de la computaci ón, Sistemas de Informaci ón Geográfic a
La difusión en los nuevos espacios de representación al público del arte rupestre prehistórico; 2012	Cualitat ivo empíric o-analíti co	Difusión virtual e interpretaci ón de arte rupestre	Campo del arte rupestre
La difusión del arte rupestre en los planes de gestión, reflexiones y retos; 2012	Cualitat ivo históric o-herme néutico	Gestión cultural de arte rupestre	Campo del arte rupestre

Aplicación de las TICS en la Conservación y Difusión del Patrimonio Documental y Bibliográfico, en la Biblioteca Nacional del Perú; 2013	Cuantit ativo empíric o-induct ivo	TIC y gestión del patrimonio documental	Patrimoni o cultural, biblioteca
Lo viejo y lo nuevo: el patrimonio cultural digitalizado. Preguntas de investigación; 2013	Cualitat ivo crítico-s ocial	Digitalizaci ón documental de bibliotecas	Patrimoni o cultural, biblioteca y digitalizac ión document al
Nuevas tecnologías para la interpretación y promoción de los recursos turísticos culturales; 2015	Cuantit ativo racional ista-ded uctivo	Promoción turística y recursos TIC	Ciencias de la computaci ón
Realidad Aumentada y su aporte al Patrimonio Cultural. Universidad Nacional de Chimborazo; 2015	Cuantit ativo empíric o-induct ivo	Realidad virtual, realidad aumentada y web 2.0	Ciencias de la computaci ón, informaci ón gráfica
Aplicación en realidad aumentada para divulgación del patrimonio cultural; 2016	Cuantit ativo racional ista-ded uctivo	Realidad aumentada y divulgación de patrimonio	Ciencias de la computaci ón, informaci ón y comunica ción
Nuevos lenguajes, Nuevos Retos. Marketing aplicado a la difusión del patrimonio arqueológico; 2016	Cualitat ivo históric o-herme néutico	Modelo de gestión cultural de trabajos de arqueología	Profesion ales de arqueolog ía
Patrimonio y narrativas transmedia, el caso proyecto ciudad "Más que paredes"; 2017	Cualitat ivo crítico-s ocial	Participació n local en gestión cultural y narrativa transmedia	Comunica ción social y gestores de patrimoni o

Patrimonio y	Cualitat	Narrativa	Educació
narrativas	ivo	transmedia	n y uso de
transmedia, el	crítico-s	para	tecnología
caso proyecto	ocial	obtención	S
ciudad "Más que		de	educativa
paredes"; 2017		contendidos	S
Intercreatividad y	Cualitat	Co-creació	Ciencias
Comunicación	ivo	n de	de la
Transmedia: El	crítico-s	contenidos	computaci
Auge de las	ocial	у	ón,
Comunidades		comunicaci	comunica
Tecnosociales;		ón	ción
2017		transmedia	
Gestión del	Cuantit	Nuevas	Ciencias
patrimonio	ativo	tecnologías	de la
Cultural y Nuevas	empíric	para	computaci
Tecnologías; 2013	o-induct	comunicaci	ón
	ivo	ón de	
		contenidos	

Tabla 2: Trabajos de investigación revisados en este estado del conocimiento

Fuente: elaboración propia.

La información proveída por la tabla precedente, hace un balance resumido de los aspectos epistemológicos analizados por diferentes campos académicos y procederes de interés para el presente estado del conocimiento; estos trabajos revisados permiten también extraer algunas relaciones epistémicas —en calidad de tesis—, que se hacen evidentes entre los objetos y/o unidades de investigación abordados, y que a continuación se describen.

- La información con mayor valor para el respaldo de contenidos, es proveída por la gente más cercana al fenómeno; estos actores proporcionan los elementos cardinales para la creación de contenidos de difusión atrayentes mediante la web.
- El patrimonio cultural es asumido como recurso turístico, entonces, la gestión cultural se apoya en el turismo para garantizar su continuidad, haciendo frente a los periodos de crisis económica, cuando se condiciona la sustentabilidad del proceso.
- Hay un Internet de las cosas, que obliga a que todo deba estar conectado a la red de redes (Sedeño, 2016). La ciudadanía global se apoya en Internet para acceder a información de la web; lo que no está en la web tiende a dejar ser intrascendente.
- La digitalización de imágenes de arte rupestre mediante tecnologías computacionales de súper alta definición y luz infrarroja –Cueva de Ekain e.g., hace posible generar contenidos que permiten imaginar las representaciones en toda su magnitud.
- La creación de aplicaciones para dispositivos móviles son los medios adecuados para llegar a públicos y audiencias de todo tipo y lugar; porque todos los

ciudadanos y roles presentes y futuros funcionan en línea, en Internet.

3.4. Conclusiones validadas de los trabajos revisados

Se han armado cinco conclusiones con validez para el problema y objeto de investigación del estado del conocimiento: aplicación de TIC en gestión de patrimonio cultural, manejo de información en entornos virtuales web, herramientas de manipulación de información digital, turismo y difusión de patrimonio cultural, y difusión tecnológica del arte rupestre.

3.4.1. Aplicación de TIC en gestión de patrimonio cultural

Es indispensable que la gestión cultural debe ir paralela a su gestión digital, planificando y parametrizando el proceso mediante las TIC (Vid. Palau, L., 2016; Irala, P., 2013); tomar acciones respecto a los bienes culturales es necesario, e introducirlos en los escenarios digitales es responsable.

La gestión de contenido cultural digital para ponerse en la web, permite conectarlo con el público ampliado, entablando impacto y aprendizaje social; para lo cual se debe comenzar prestando más atención a las nuevas formas de socialización, y a las herramientas de difusión digital, como las referidas al marketing y propaganda digital (Palau, L., 2016). En los últimos años, tanto las empresas como los productores de información, van trasladándose progresivamente a la red de redes –Internet–, espacio en el que actualmente se produce la gestión del conocimiento (Díaz, N., 2015); concurriendo de forma virtual e indiferenciada tanto productores como consumidores.

Con relación al conocimiento, Rodríguez y Beltrán (2017, p. 39) denominan "prosumidor" a un tipo de ciudadano global; individuo productor y consumidor de contenidos digitales culturales utilizando TIC, que coadyuva en la apropiación de los mismos por parte de ciudadanos y co-creadores, generando de esta forma escenarios virtuales de re-significación de los contenidos digitales mediante la activación de la participación local.

Como afirma Ramos (2013), el patrimonio digitalizado permite su reutilización en otros ámbitos; una relación ineludible es considerar que:

El paso del tiempo y la omnipresencia de Internet ha puesto de manifiesto que no sólo es necesario difundir y preservar el patrimonio digital, además, es preciso impulsar la digitalización del patrimonio cultural porque es preciso volcar toda la cultura en Internet para que sea accesible en todo el mundo, "lo que no está en Internet no existe" (Ramos, L.,2013).

Un caso de utilización de TIC e Internet en gestión de patrimonio cultural, fue el aplicado en torno a las ciudades de Lugo, Santiago de Compostela, Melgaço, Monçao y Valencia, en el noroeste de España en 2014; la finalidad, comunicación del patrimonio mediante la construcción de un catálogo digital

accesible a través de Apps. Se trataba de contenidos apoyados en Internet, construidos de forma colaborativa por un equipo técnico; cuyo resultado arrojó un nuevo concepto de comunicación del patrimonio cultural a través de las TIC, que logró ser más dinámica en asimilación, portar un carácter transfronterizo y generar promoción conjunta de lo histórico, artístico y arqueológico (Sic. Álvarez, 2014).

La adopción de criterios de colaboración social en la construcción del relato aporta en el principio de humanizar los contenidos; asumiendo que siempre existirán distintas formas de lectura e interpretación de lo difundido (Cfr. Fritzler, M., 2017). En esto, el uso de AR y VR ayuda a generar conciencia sobre el patrimonio en los actores locales, y a recuperar información dada por perdida –todo el proceso requiere recabar mucha información—; sin la inducción que proporcionan estas herramientas de visualización de información, no se pudiera obtener tales beneficios en mejor medida (Cfr. Bonifaz, E., y Molina, F., 2015).

3.4.2. Manejo de información en entornos virtuales web

Con la consolidación de Internet y la amplia presencia de contenidos en la web, el manejo de información ha constituido una nueva forma de hacer economía, involucrando actividades de producción y consumo basadas en su ámbito global, Big Data (Cfr. Sedeño, 2016); que llevan a reflexionar acerca del lado humano de quienes producen y consumen información; es importante no dejar de lado y constatar la manera cómo aprenden con la visualización de datos, cómo aceptan y se integran en las actividades de recurrencia a información, demanda de acción posible de atender mediante minería de datos (Ibid.).

Para superar las barreras comerciales de acceso a información y de globalización, se da la tendencia de mostrar toda la información en Big Data de forma diferente y especializada –geo-referenciada–, facilitando su acceso y comprensión, viable también mediante minería de datos y herramientas inmersivas de visualización de datos –AR y VR– (Ibid.). La AR y VR son potentes para la visualización de información gráfica; aunque en temas culturales la AR es aplicada más en museos y galerías de arte, no habiéndose hecho aún en muchos otros aspectos que hacen también a la dimensión cultural (Bonifaz, E., y Molina, F., 2015).

Es evidente que la VR sobrepasa a la AR, pero esta última ha crecido exponencialmente, y constituye un importante recurso a ser aplicado en programas de difusión cultural y apropiación social (Zapata, M., 2016), reportando utilidad para la gestión cultural digital.

3.4.3. Herramientas de manipulación de información digital

Según Guttentag (2010), cualquier recurso o herramienta TIC puede ser vanguardista u obsoleto para acercarse a visitantes y generar interés, todo depende de la medida en que responde a cuestionamientos cómo: cuándo utilizarlas, con qué objetivo y cuál es su efectividad; considerando que éstas no suplirán el

proceso experiencial que motiva la visita turística (Apud. Caro, J., Luque, A., y Zayas B., 2014, p. 944). Asimismo, la minería de datos educativos y su visualización en entornos digitales permite desarrollar métodos de exploración de información para aprendizaje. Generar contenidos implica la combinación de habilidades de computación, estadística y procesos de aprendizaje diferenciadas como métodos interdisciplinares[1] y particulares[2] (Vid. Sedeño, 2016, pp. 2-8).

Sin restar importancia por su mayor componente social que conformación computacional; la de comunidades tecnosociales a través de la narrativa transmedia es fundamental para la creación de contenidos (Camarero, L., 2017). Las narrativas transmedia son una interesante opción de comunicar temas de patrimonio cultural, utilizando múltiples medios y plataformas digitales, como el documental web, creaciones artísticas, AR, redes sociales y estrategias de co-creación de contenidos (Cfr. Rodríguez, F. v Beltrán, C. 2017, p. 38). "La comunicación transmedia permite que un número ilimitado de personas puedan participar en una misma narrativa usando diferentes formatos" (Camarero, L., 2017, p. 79).

3.4.4. Turismo y difusión de patrimonio cultural

Las TIC son un factor clave para la gestión de cualquiera de los componentes del sistema turístico –actividades, servicios y atractivos—; e implican procesos que vienen acompañados de las nuevas formas de producción y consumo turístico (Cfr. Coma, J., Elorrieta, B., y Torres, A., 2016). De acuerdo a Mallor et al. (2013) el poder de atracción de un determinado recurso turístico –bien de patrimonio— guarda relación directa con su capacidad de difusión (Apud. Caro, J., Luque, A., y Zayas B., 2015).

En tanto, la difusión del patrimonio cultural implica dos ámbitos de actuación: facilitar el conocimiento a visitantes y promover valores en las poblaciones locales (Martí, A., 2012, p. 226). Siendo que, en la mayoría de los casos, son los mismos habitantes locales quienes ponen en riesgo la preservación del patrimonio cultural, como es el caso del arte rupestre (Cfr. Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y., 2016).

La difusión del patrimonio por canales de comunicación digital es determinante; el Internet es una cuestión de dominio público y acerca a las personas. Según Carretón (2016), si no se lo hace como especialistas y no se actúa frente a Internet, es posible que se produzcan procesos de desinformación sobre los bienes de patrimonio (Apud. Palau, L., 2016).

Hoy en día y frente al Turismo 2.0, el visitante atraído por el patrimonio se anticipa a la experiencia de viaje y es consumidor de información online antes de su visita (Cfr. Caro, J., Luque, A., y Zayas B., 2015). Entonces, mediante la simulación, VR, AR, ... un visitante o usuario con interés cultural, puede acercarse al destino turístico, su patrimonio

cultural, e incluso interactuar con el medioambiente (Bonifaz, E., y Molina, F., 2015).

3.4.5. Difusión tecnológica del arte rupestre

Las réplicas materiales de pinturas de arte rupestre –facsímiles— no se comparan con la precisión, grado de inmersión, alcance y facilidad de acceso a audiencias remotas que proporciona su versión digital (Irekia 2016). La opción de difusión del arte rupestre mediante la web, permite la reutilización de mucha información que está guardada y no se le da uso (Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y., 2016).

Las temáticas del patrimonio cultural y su difusión, son un asunto complejo y frágil. Si bien la gestión del patrimonio implica actividades de protección y conservación de los bienes culturales, también involucra su socialización (Sic Balart, Ll. y Menchon, J. 2015, p. 592). Así la difusión del arte rupestre supone la incorporación de acciones que permitan apreciarlo, comprenderlo y disfrutarlo; operaciones que se fundamenten en contenidos de tipo cultural, educativo y lúdico (Rey, J., 2012, p. 212). De acuerdo a Colorado (2004) "Los nuevos lenguajes nacidos de las tecnologías de la información permiten una renovación cultural como no había sido posible hasta ahora, haciendo factible la interactividad con el espectador..." (Apud. Palau, L., 2016).

En este sentido, los conceptos de ocio inteligente y lenguaje hipermedia para mostrar bienes de arte rupestre –trabajo junto a las TIC–, deben ser asumidos como factores de supervivencia e innovación dentro los procesos de gestión cultural del patrimonio (Rey, J., 2012). La gestión cultural de cualquier tipo de bien de patrimonio conlleva el componente TIC junto a todas sus formas de expresión tecnológica. Ya no se trata de un instrumento de trabajo, sino de parte del proceso, como también afirmaban Palau (2016) e Irala (2013).

3.5. Resultados de conocimiento

- La disposición de una base de datos digital que registre los bienes de patrimonio en formato 3D, fotografía panorámica 360°, y modelado y animación 3D; es un insumo para la realización de recorridos virtuales modelados, creación de aplicaciones para dispositivos móviles y creación de estructuras para video inmersivo (Cfr. Álvarez, 2014).
- La visualización de datos, como alternativa para entregar información de forma diferente, implica creación de conocimiento; una forma de arte usando los medios de comunicación virtuales dirigiéndose a generar implicancias sociales, mostrando información diferente, organizada y atrayente (Sedeño, 2016). Según Manovich (2010), esta forma de difusión –visualización de datos–, tiene como antecedente el arte rupestre, y en la actualidad representa otra forma de necesidad humana (Apud. Sedeño, 2016, 10); ya que, citando a Rheingold (2004), se convive con procesos de movilización multitudinaria dirigida por las TIC, efecto denominado Inteligencia

colectiva o mente enjambre (Apud. Sedeño, 2016, 8), para lo que es determinante trabajar utilizando criterios Open Data[3] en la visualización de datos, buscando promover la manipulación de contenidos por activistas.

- Una plataforma web de gestión cultural bien construida, que informe y difunda sobre arte rupestre, no solamente va tener una finalidad educativa y de conocimiento, sino también lúdica (Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y., 2016).
- Es preciso la inclusión de la población local en el proceso de creación de contenidos digitales de difusión de patrimonio cultural (Rodríguez, F. y Beltrán, C., 2017).
- Para la puesta en valor, la documentación cartográfica espacial, es un complemento para la gestión del patrimonio (Farjas, M., Domínguez, J., Picazo, A., y Pérez, C. 2015).

3.6. Desarrollo tecnológico

Los trabajos que han incorporado recursos digitales en sus procesos de gestión cultural, pueden encaminar un carácter evolutivo hacia otros sitios, bienes de patrimonio y el paisaje (Cfr. Álvarez, 2014); involucrando acciones secundarias particulares que permitan la puesta en valor tipificada y creativa. Es necesario el desarrollo e integración de aplicaciones más innovadoras que den al usuario experiencias de acercamiento y conocimiento distintas, interactuando con artefactos virtuales de carácter real (Bonifaz, E., y Molina, F., 2015).

Para la georeferenciación de sitios de bienes culturales, la cartografía documental debe atravesar por las fases: corrección radiométrica, fusión de la banda pancromática y multiespectral, recorte de la zona de estudio, corrección atmosférica, análisis exploratorio, clasificación, edición cartográfica temática y modelo de elevación digital; utilizando métodos supervisados (Sic. Farjas, M., Domínguez, J., Picazo, A., y Pérez, C., 2015).

4. DISCUSIÓN

Una fotografía bien tomada podría traducirse en una imagen digital de gran atractividad, por lo tanto, atrayente, y mucho más si es provista de inmersividad a través de tratamiento computacional; como la tipología de fotos del Gran Tour y los paisajes exóticos que cobran nuevamente importancia (Vid. Chiarella y Amoruso, 2008). Concibiendo la inmersión como aquella experiencia centrada en el espectador o usuario (Sic. Martí, 2008), quien a través de la observación podría comprender un bien de patrimonio en cuestión.

Es necesario introducirse más en los aportes ya existentes de la computación; como para este caso, partiendo del proveído en base a la lógica matemática de Kurt Gödel y Alan Turing, que da pautas para enlazar una especie de hardware y software humano; o sea, el cuerpo con el espíritu a través de la computación (Apud. Gutiérrez, 2013).

Es potencial trabajar la gestión del patrimonio a través del mundo virtual, similar o incluido dentro el que para Carr y Pond (2007) constituye su denominada Second life o "segunda vida" (Apud. Márquez, 2010); al que puede ser importante introducirse como un plano educativo paralelo, que permita llegar a las personas con el tema patrimonio cultural (e.g.).

Como las mismas pinturas rupestres cumplieron un papel de simbolismo de la realidad y de lo imaginario; ésta misma forma de imagen sirve para la memoria, como un puente entre el tiempo y el espacio, posible a reforzarse si adicionalmente se vale de la existencia y permanente desarrollo de la simulación digital multisensorial (Sic. Levis, 2011, 7-11), y más aún si se le suman conceptos estratégicos como el Open Data y Big Data de Internet; así puede permitir aprovechar y respaldar mejor no solo el tema de patrimonio cultural, sino también el turístico (Vid. Thinktur, 2016).

Los mundos virtuales o info-virtuales resultan los más adecuados para el aprendizaje, porque fomentan la interacción (Márquez, 2010); un entorno virtual de aprendizaje constituye el espacio adecuado para el trabajo en gestión del patrimonio cultural inmueble, como el arte rupestre.

Resultados de conocimiento y artefactos

Como alternativa de difusión educativa del patrimonio cultural en entornos virtuales, la visualización de datos digitales debe ser asimilada en un sentido como el del periodismo transmedia; que facilita la velocidad de lectura y la comprensión, pero manteniéndose conscientes de la infoxicación.

Rescatando algunos aportes de Caro, Luque y Zayas (2014), las redes sociales virtuales son recursos que proveen la oportunidad de integrar el patrimonio cultural a los ciudadanos del mundo; en sus canales como Facebook, Twitter, Google +; recursos temáticas como YouTube, MySpace, LinkedIn, FourSquare, Flickr, TripAdvisor,...; y otros que proporcionan usos singulares para dicha integración de contenidos culturales que seguramente facilitan la gestión del patrimonio.

Siguiendo la afirmación de Irekia (2016), la difusión del arte rupestre mediante aplicaciones móviles iOS y Android, y en versión web que incluya visor de imágenes en calidad de gigapixel, VR, AR y con otros entornos que muestren información contextual storytelling en distintos idiomas; configuran un producto digital muy atrayente.

Los esfuerzos de difusión del arte rupestre involucran acciones de propagar información, divulgar conocimientos, socializar noticias, ... que estén acompañadas por términos como: interpretación, didáctica de divulgación –no académica–, estudios de público, benchmarking, entre otros (Rey, J., 2012, pp. 211-216).

5. CONCLUSIONES

Los avances tecnológicos referidos a las ciencias de la computación, y en específico a la información gráfica, son

significativos. Pero gran parte de los recursos, herramientas e instrumentos desarrollados no tienen posibilidades de mayores expansiones, porque no están siendo aplicados a otros campos disciplinares que les permitan visibilizar mayores aplicaciones y especificaciones para que las investigaciones prosigan.

Los profesionales de otras disciplinas y áreas de conocimiento diferentes a las de las ciencias de la computación, no tienen interés y se mantienen al margen de los avances, prestaciones y utilidades que proporcionan las TIC, como sucede con el arte rupestre.

Haciendo referencia solamente a la comunicación y difusión, parece indispensable construir un modelo basado en TIC, que establezca estrategias y coadyuve en dichas funciones. En tema de arte rupestre —una de las variables del presente estado del conocimiento—, se ve necesario afrontar la situación y generar un patrón accesible, entendible y factible, que haga posible la socialización de ese bien de patrimonio de inmensa riqueza colectiva y de importancia para el aprendizaje social global al igual que las TIC.

La utilización de recursos y herramientas digitales de mayor poder de difusión y alcance global, tales como Facebook, Instagram, Google+, Twitter -con sus hashtags MySpace, Delicious, (microblogging)-, VK, Ning, Foursquare, StumbleUpon, Skyrock, entre tantos, son elementales; considerando que algunos de estos solo tienen alcance regional.

En la actualidad, la gran mayoría de las personas tienen la condición de nativo o inmigrante digital. El segmento de personas que no tiene habilidades para acceder y utilizar las TIC, Internet y la web es seguramente muy reducido; no obstante, todos tienen algún nivel de influencia y acercamiento a las mismas por medio de las relaciones interpersonales.

Deberíamos ser capaces no solo de encontrar cualquier tipo de documento en la Web, sino también de crear cualquier clase de documento fácilmente. Deberíamos no sólo poder interactuar con otras personas, sino crear con otras personas. La intercreatividad es el proceso de hacer cosas o resolver problemas juntos (Camarero, L., 2017, p. 77).

6. REFERENCIAS

Álvarez, R. (2014). El proyecto "Muralla Digital" Aplicación de las TIC a la puesta en valor del patrimonio cultural. Lugo, España: Unión Europea, Fondo Europeo de Desarrollo Regional FEDER. Recuperado de: http://www.muralladigital.eu/microsites/3/pdf/02_MURALLA DIGITAL 21 11 2014.pdf

Amaro, A., Flaviani, F., Figueroa, A., De Valencia, R., y Cardinale Y. (2016). Cuarta conferencia Nacional de Computación, Informática y Sistemas. Caracas: Ontología para las Manifestaciones Rupestres en Venezuela. Hacia el Desarrollo de una Plataforma para la Preservación Digital. Recuperado de: http://concisa.net.ve/memorias/CoNCISa2016/CoNCISa2016-p101-111.pdf

Aranibar, V. (2017). Procesamiento de imágenes computacionales para compresión en entornos de realidad virtual: Aplicación en arte rupestre para fines turísticos y de apropiación cultural local. La Paz: Universidad Nacional Siglo XX, Dirección de Posgrado, Maestría en Ciencias de la Computación.

Balart, Ll. y Menchon, J. (2015). Actas del II Congreso Internacional de Buenas Prácticas en Patrimonio Mundial: Personas y Comunidades. ISBN: 978-84-606-9264-5. Gestión Municipal del Patrimonio Mundial en Tiempo de Crisis: Tarragona.

Recuperado de: http://eprints.ucm.es/41656/1/GestionMunicipalTarragona.pdf

Bonifaz, E., y Molina, F. (2015). Realidad Aumentada y su Aporte al Patrimonio Cultural. Universidad Nacional de Chimborazo. Recuperado de: https://www.researchgate.net/publication/285586100_REALI DAD_AUMENTADA_Y_SU_APORTE_AL_PATRIMONIO CULTURAL

Camarero, L. (2017). Cultura Transmedia, Comunicación y Educación: Avances y Significaciones. Colombia: Intercreatividad y Comunicación Transmedia: El Auge de las Comunidades Tecnosociales. UMB Virtual. Recuperado de: http://umbvirtual.edu.co/wp-content/uploads/2016/11/Transme dia 2016.pdf

Caro, J., Luque, A., y Zayas B. (2015). Revista de Turismo y Patrimonio Cultural PASOS, Vol.13, N.º 4. España: Universidad de Málaga. Nuevas tecnologías para la interpretación y promoción de los recursos turísticos culturales. Recuperado de: http://www.pasosonline.org/es/articulos/download/file?fid=57.

Caro, J., Luque, A., y Zayas B. (2014). XVI Congreso Nacional de Tecnologías de la Información Geográfica. Alicante: Aplicaciones tecnológicas para la promoción de recursos culturales. Universidad de Málaga. Recuperado de: https://rua.ua.es/dspace/bitstream/10045/46827/1/2014_Caro_etal Congreso TIG.pdf

Chiarella, M. y Amoroso, G. (2008). Imagen urbana, fotografía interactiva e imágenes semi-inmersivas. La Habana: XII Congreso SiGraDi. Recuperado de: https://cumincad.architexturez.net/system/files/pdf/sigradi200 8 126.content.pdf

Coma, J., Elorrieta, B., y Torres, A. (2016). La incidencia de las TIC en destinos turísticos de la montaña española. Un análisis de casos. Barcelona: Departamento de Geografía, Universidad de Barcelona. Recuperado de: https://www.cett.es/fitxers/campushtml/MiniWebs/122/papers/Coma_Elorrieta_Torres.pdf

Díaz, N. (2015). Modernización de la gestión del patrimonio cultural peruano, en archivos y bibliotecas; aplicando las Tecnologías de la Información y la Comunicación TICS. Recuperado de: http://eprints.rclis.org/27919/1/diaz 001 web.pdf

Díaz, N. (2013). Aplicación de las TICS en la Conservación y Difusión del Patrimonio Documental y Bibliográfico, en la Biblioteca Nacional del Perú. Piura: Universidad de Piura. Recuperado de:

- https://pirhua.udep.edu.pe/bitstream/handle/11042/1804/MAS DET 010.pdf?sequence=1
- Farjas, M., Domínguez, J., Picazo, A., y Pérez, C. (2015). Teledetección: Humedales y Espacios Protegidos. XVI Congreso de la Asociación Española de Teledetección. Sevilla: Utilización de recursos Open Data en procesos de documentación cartográfica de bajo coste sobre territorios no estructurados de interés arqueológico mediante imágenes Landsat 8: Área de Mleiha-Khor Fakkan (E.U.A.). Recuperado de: http://oa.upm.es/40425/1/INVE MEM 2015 221325.pdf
- Fritzler, M. (2017). Cultura Transmedia, Comunicación y Educación: Avances y Significaciones. Colombia: Patrimonio y narrativas transmedia, el caso proyecto ciudad "Más que paredes". UMB Virtual. Recuperado de: http://umbvirtual.edu.co/wp-content/uploads/2016/11/Transme dia_2016.pdf
- Gutiérrez, C. (2013). Kurl Gödel y Alan Turing: una nueva mirada a los límites humanos. Chile: En Revista Bits de ciencia, Universidad de Chile. Recuperado de: https://www.dcc.uchile.cl/Bitsdeciencia09.pdf
- Irala, P. (2013). Gestión del patrimonio Cultural y Nuevas Tecnologías. España: Universidad San Jorge. Observatorio Journal Vol. 7, N.º 4. Recuperado de: http://www.scielo.mec.pt/pdf/obs/v7n4/v7n4a09.pdf
- Irekia. (2016). El Gobierno Vasco digitaliza en súper-alta resolución la Cueva de Ekain Patrimonio Mundial de la UNESCO. Recuperado de: http://www.irekia.euskadi.eus/es/news/35156-gobierno-vasco-digitaliza-super-alta-resolucion-cueva-ekain-patrimonio-mund ial-unesco
- Levis, D. (2011). Arte y computadoras, Del pigmento al bit. Buenos Aires, Argentina. 3º Edición, 1º Edición hipertextual. Recuperado de: http://diegolevis.com.ar/secciones/publicaciones/ARTE_Y_C OMPUTADORAS_2011.pdf
- Márquez, I. (2010). La simulación como aprendizaje: educación y mundos virtuales. España: Universidad complutense de Madrid. Libro Nuevos medios nueva comunicación. Recuperado de: http://campus.usal.es/~comunicacion3punto0/comunicaciones/059.pdf
- Martí, A. (2012). Jornadas técnicas para la gestión del arte rupestre, Patrimonio Mundial. Huasca: UNESCO. La difusión del arte rupestre en los planes de gestión, reflexiones y retos. Recuperado de: https://jornadastecnicasarterupestre.files.wordpress.com/2012/04/jornadas-tecnicas-arte-rupestre.pdf
- Martí, F. (2008). Inmersión en la imagen visual: Espacio, visión y presencia. Valencia: Tesis Doctoral, Universidad Politécnica de Valencia. Recuperado de: https://riunet.upv.es/bitstream/handle/10251/4322/tesisUPV19 88.pdf
- Palau, L. (2016). Nuevos Lenguajes, Nuevos Retos. Marketing aplicado a la difusión del patrimonio arqueológico. Universitat de Barcelona. Recuperado de:

- http://diposit.ub.edu/dspace/bitstream/2445/110084/1/TFG_Pa lau%20Nadal Laura.pdf
- Ramos, L. (2013). VI Jornada Profesional de la Red de Bibliotecas del Instituto Cervantes. Madrid: Universidad Complutense de Madrid. Lo viejo y lo nuevo: el patrimonio cultural digitalizado. Preguntas de investigación. Recuperado de:
- http://www.cervantes.es/imagenes/File/ponencia_fernando_ra mos rbic.pdf
- Rey, J. (2012). Jornadas técnicas para la gestión del arte rupestre, Patrimonio Mundial. Huasca: UNESCO. La difusión en los nuevos espacios de representación al público del arte rupestre prehistórico. Recuperado de: https://jornadastecnicasarterupestre.files.wordpress.com/2012/04/jornadas-tecnicas-arte-rupestre.pdf
- Rodríguez, F. y Beltrán, C. (2017). Cultura Transmedia, Comunicación y Educación: Avances y Significaciones. Colombia: Patrimonio y narrativas transmedia, el caso proyecto ciudad "Más que paredes". UMB Virtual. Recuperado de: http://umbvirtual.edu.co/wp-content/uploads/2016/11/Transme dia 2016.pdf
- Rubio, T. (2013). La gestión de la imagen digital en proyectos de documentación del patrimonio cultural. España: Cuadernos de arte rupestre. Recuperado de: http://www.cuadernosdearterupestre.es/arterupestre/6/RubioC AR2012_06_01web.pdf
- Sedeño, A. (2016). Razón y Palabra. Primera Revista Electrónica en Iberoamérica Especializada en Comunicación, Número 92. México: La visualización de datos como recurso social: posibilidades educativas y de activismo. Recuperado de:
- http://www.revistarazonypalabra.org/index.php/ryp/article/download/881/930
- Suárez, B. (2017). Cultura Transmedia, Comunicación y Educación: Avances y Significaciones. Colombia: Gestión y Producción de Proyectos Transmedia en el Contexto Colombiano. UMB Virtual. Recuperado de: http://umbvirtual.edu.co/wp-content/uploads/2016/11/Transme dia_2016.pdf
- Taubin, G. (2011). Computación visual: Toma de decisiones y Big Data por medio de imágenes. Brown University. Recuperado de: http://www.fundacionsadosky.org.ar/wp-content/uploads/2013/09/Taubin-BigDataVisualization-flat-small.pdf
- Thinktur. (2016). Tendencias tecnológicas en turismo para 2016. España: Recuperado de: http://www.thinktur.org/media/Ebook_Tendencias_Tec_Turis mo_2016.pdf
- Zapata, M. (2016). Reviste KEPES. Colombia: Año 13, N.º 14. Aplicación en realidad aumentada para divulgación del patrimonio cultural. Universidad de Medellín. Recuperado de: http://kepes.ucaldas.edu.co/downloads/Revista14 3.pdf

INTERACCIÓN HUMANO COMPUTADOR: UN MÉTODO PARA EL RECONOCIMIENTO DE GESTOS DE LA MANO A PARTIR DE IMÁGENES

Juan Pablo Luna Felipez, Ph.D.

jplunaf@gmail.com

Ingeniería Informática

Universidad Nacional "Siglo XX"

Llallagua, Bolivia

Resumen- Mejorar las interfaces de interacción entre el humano y la computadora es una actividad que se busca desarrollar de forma constante, buscando la mejor interfaz en la que el usuario pueda interactuar con la computadora en la misma forma en la que se comunica con el mundo, es decir utilizando gestos. La detección de gestos de la mano es un proceso complejo de visión artificial, donde los métodos existentes aún no son suficientes ni óptimos, ya que aún presentan diversos problemas de precisión por la complejidad de la mano y de los gestos, así como también por las características propios de cada método y por los problemas propios de la visión artificial, por lo que persiste la dificultad en la detección, existiendo desafíos para su implementación, por lo que es un campo abierto a la investigación y que continúa en desarrollo debido a las necesidades actuales de interacción natural con la computadora y sus aplicaciones.

En la presente investigación se presenta un nuevo método de reconocimiento de gestos de la mano a partir de imágenes bidimensionales obtenidas a partir de una cámara monocular sin calibración previa, el método emplea elementos como la proporción áurea, las series de Littler, de Fibonacci, detección de descriptores, así como un modelo de codificación de gestos de la mano, aportando con algunas técnicas y estrategias en diferentes etapas del método, de forma que acelere el reconocimiento del gesto de la mano.

Con el fin de probar el método se desarrolló un prototipo para probar y analizar el funcionamiento de las distintas etapas del método, así también se desarrollaron aplicaciones tridimensionales que se controlan por gestos de la mano empleando el método propuesto, todo se construyó sobre en el motor Unity3D por las ventajas que ofrece; estas aplicaciones permiten realizar experimentos con diferentes usuarios obteniendo muy buenos resultados con el método propuesto, que puede aplicarse a sistemas de realidad virtual, aumentada, mixta, videojuegos y otros como los sistemas para personas con capacidades diferentes.

Palabras clave: Gesto de la Mano, Interacción Humano computadora, Reconocimiento de gestos de la mano, Visión Artificial.

Abstract- Improving the interaction interfaces between humans and computers is an activity that seeks to constantly develop, looking for the best interface in which the user can interact with the computer in the same way in which he communicates with the world. , that is, using gestures. The detection of hand gestures is a complex process of artificial vision, where the existing methods are still not sufficient or optimal, since they still present several precision problems due to the complexity of the hand and the gestures, as well as the characteristics of each method and due to the problems of artificial vision, which is why the difficulty in detection persists, and there are challenges for its implementation, which is why it is a field open to research and which continues to be developed due to the needs of natural interaction with the computer and its applications.

In the present investigation a new method of recognition of hand gestures is presented from two-dimensional images obtained from a monocular camera without previous calibration, the method uses elements such as the golden ratio, Littler series, Fibonacci series, detection of descriptors, as well as a hand gesture coding model, contributing with some techniques and strategies in different stages of the method, so as to speed up hand gesture recognition

In order to test the method, a prototype was developed to test and analyze the operation of the different stages of the method, as well as three-dimensional applications that are controlled by hand gestures using the proposed method, everything was built on the engine. Unity3D for the advantages it offers; These applications allow experiments to be carried out with different users, obtaining very good results with the proposed method, so it can be applied to virtual, augmented, and mixed reality systems, video games, and others such as systems for people with different abilities..

Keywords: Computer vision, gesture recognition, hand gesture, human-computer interaction.

1 INTRODUCCIÓN

La interacción humano computador fue evolucionando desde las interfaces de línea de comandos (Andrade, 2016), las interfaces gráficas de usuario (Peralta, 2012) hasta las pantallas táctiles y multitáctiles.

Sin embargo, con el desarrollo de la ciencia y tecnología se busca nuevos métodos tienden a ser naturales basados en la comunicación que realiza el ser humano a través del habla, o de gestos corporales, faciales, de la mano, entre otros.

Por lo que se prevé un nuevo hito en la forma de interactuar con la computadora de acuerdo con Odio (2015) a través de las Interfaz Natural de Usuario o NUI Natural User Interface que de acuerdo con D. Wigdor. W. & Dennis. (2011) son interfaces que permiten interactuar con el usuario de forma natural como interactúa con otras personas.

Uno de los primeros en intentar la interacción natural con las computadoras fue Steva Mann (Steve, 2001), entre sus trabajos se encuentra el EyeTap que son unos lentes que agregan realidad aumentada a lo que ve el usuario, otro de los primeros sistemas de interfaz natural que empleó movimientos del cuerpo y voz para interactuar con un programa fue Put-that-there desarrollado por Richard Bolt desde 1980 (Richard, 1980).

Ya en la última década van surgiendo diversos dispositivos y herramientas para que el usuario emplee su propio cuerpo a través de gestos para controlar la computadora (Petersen & Stricker. 2009), lo que ha desencadenado su auge, motivado principalmente por la importancia de sus posibles aplicaciones: nuevas modalidades de interacción hombre-máquina, reconocimiento del lenguaje de signos, navegación en entornos virtuales, identificación de expresiones faciales, biometría y seguridad, seguimiento o tracking del movimiento de personas o grupos, etc. (Torres, 2010)

El reconocimiento de gestos de las manos es de alta utilidad, ya que es una de las partes del cuerpo que más se utiliza de acuerdo con Ronchetii. (2016) y que en los últimos años ha atraído un creciente interés por sus aplicaciones en diversos campos como la interacción humano-computadora, robótica, videojuegos, interpretación automática de lenguaje de señas y demás (Andrade,2016)

La comunicación del humano con la computadora basado en los gestos de la mano se presenta como una alternativa de alta utilidad, en el que se desarrollan investigaciones para interactuar por medio de tecnologías como Wii, Kinectic, Leap Motion y otros dispositivos, así como por métodos de visión artificial, que sin

Sin embargo aún no brindan una solución definitiva a este campo.

A. El Problema del reconocimiento de gestos

Si bien el tema de la interacción con la computadora mediante gestos de la mano tiene un interés creciente, existen varios estudios que denotan el esfuerzo por llegar a soluciones en este campo, que brindan algunas soluciones y también presentan algunos problemas y dificultades entre los cuales se puede mencionar: existe poco avance en el área (Ariel, 2010), el rendimiento aún no es óptimo (Arranz, Liu & López. 2012), existen desafíos en la implementación: según García Cortés. (2014), tienen una alta complejidad (Ariel, 2010), falta de fiabilidad en la detección de los gestos (Arranz, Liu & López. 2012), es un proceso complejo (García Cortés, 2014), falta de precisión y dificultad de distinción, es un problema latente que dista mucho de estar resuelto (Torres, 2010) existe la necesidad como medio de interacción actual (Torres, 2010), está lejos de resolverse (Ronchetii, 2016), requiere más atención (Cruz, 2019) y aún falta el rendimiento en tiempo real(Zheng,2022)

Por tanto, el proceso de reconocimiento de gestos de la mano como medio de interacción humano computador es un tema reciente, que si bien se viene estudiando aún no se han logrado resultados óptimos y donde se ha tenido poco avance y que debido a los avances en otras áreas como realidad Virtual, Realidad Aumentada y otros, cada vez se hace más necesario como interfaz natural de usuario y que debe ser estudiado por ser un problema latente.

B. Métodos de reconocimiento de gestos de la mano

La mano se compone de la palma y de cinco dedos, con la cual se puede realizar poses o gestos, que es una posición en particular de la mano, los gestos en estáticos y dinámicos

Los métodos de reconocimiento pueden ser de dos tipos: los que emplean dispositivos no basados en visión o sistemas basados en 3d y los basados en visión por Andrade. (2016) los primeros emplean tecnologías para detectar movimientos como acelerómetros, sensores etc. y se emplean en forma de artefactos como guantes, brazaletes, etc. y los segundos emplean principalmente una o varias cámaras.

1) Métodos Basados en sistemas 3D

Los métodos basados en sistemas 3D principalmente se basan en el uso de dispositivos especiales como: Kinect (Shuai,2016), (Realpe,2013), (Barros,2014) y (Plouffe & Cretu. 2015), cámaras RGB-D (Nuñez,2019),

guantes (Huitzil, Pajaro & Ramirez, 2017), Myo (Huitzil, Pajaro & Ramirez, 2017), (Motoche, 2018) y otros.

2) Métodos Basados en Imágenes

Los métodos basados en imágenes emplean imágenes obtenidas a partir de una o más cámaras, entre estos métodos se tiene: métodos que emplean redes neuronales (Sandipgiri, 2019), (Pinto, Borges, Almeida & Iális, 2019), métodos basados en Histogramas de Frecuencias (Villa, Valencia & Berrio, 2018), (Ronchetii, 2016), Métodos basados en clasificadores Haar Cascada Styles (Ruchi, Premanand, 2015), métodos basados en Máquinas de Soporte Vectorial (Ansari, 2017) y (Berru, 2019), Métodos basados en Redes Bayesianas (Thangali, Nash, Sclaroff, & Neidle, 2011), Métodos basados en Momentos Hu (Kelly, McDonald & Markham, 2009), métodos basados en SIFT(Scale Invarian Features Transform (Villa, Valencia & Berrio, 2018), métodos basados en apariencia de forma invariante afin (Roussos, Theodorakis, Pitsikalis & Maragos, 2013) y otros

C. Aplicaciones

Las diversas aplicaciones en las que puede ser útil el reconocimiento de gestos son amplias algunas de las cuales son: Ronchetii. (2016) monitoreo de pacientes, control de videojuego, navegación y manipulación de entornos virtuales, traducción de léxicos de la lengua de señas, manipulación de objetos gráficos, navegar por la web, manipular dispositivos multimedia, (Huitzil, Pajaro & Ramirez, 2017) robótica, drones, desarrollo de aplicaciones médicas como prótesis y terapias físicas (Andrade, 2016)

D. Las series de Fibonacci, Lucas y Littler

la serie de Fibonacci es una secuencia de números que se remonta al siglo XIII (Chacón , 2014) , en base a un problema de reproducción de conejos y que tiene se forma de la siguiente forma, comenzando por dos números uno, se suman los dos últimos números consecutivos de la serie para formar el siguiente número de la serie y así sucesivamente

Donde el enésimo término de la serie de Fibonacci es:

$$f_n = f_{(n-1)} + f_{(n-2)}$$
 (2)

Y los primeros términos de la serie de Fibonacci son:

$$f_1=1 y f_2=1$$
 (3)

Las series donde se suman los dos últimos términos de la serie para formar un nuevo término de la serie

comenzando con cualesquiera dos números se denomina serie de Lucas (Hutchison & Hutchison, 2010) fueron nombradas en honor al matemático francés del siglo XIX, Eduard Lucas.

Lucas estudió una serie, relacionada con la serie de Fibonacci que comienza con los términos 2 y 1, es decir los términos de esa serie son:

Por tanto, el enésimo término de la serie de Lucas es:

$$L_n=L_(n-1)+L_(n-2)$$
 (5)

Donde los primeros términos de la serie de Lucas son:

$$L_1=2 \text{ y } L_2=1$$
 (6)

La serie de Littler es otra serie especial, donde se suman los dos últimos términos de la serie para forma un nuevo término de la serie pero que empieza en 1 y 1.3, (Hutchison & Hutchison, 2010) lo bautizaron en honor al Dr. Littler., el cual en sus investigaciones estableció esa relación para los dígitos del índice, el medio y el anular que se corresponden con esta serie.

Por tanto, el enésimo término de la serie de Littler es:

$$1 \text{ n=l } (n-1)+l (n-2)$$
 (8)

Donde los primeros términos de la serie de Fibonacci son:

Algo interesante es que cuando dos términos de las series de Fibonacci, Lucas y Littler tienden a infinito, la proporcionalidad entre dos números consecutivos se acerca a 1.6180, es decir:

O sea:

$$f_{n+1}/f_n = L_{n+1}/L_n = l_{n+1}/l_n = 1.6810 = \Phi$$
 (10)

E. Proporción Áurea

La Proporción áurea o Phi (del griego Φ) (Arteaga, 2001), es considerado un número muy especial que estaba escrito en sitios públicos de Atenas con caracteres de oro y existe constancia de su conocimiento en civilizaciones antiguas como Babilonia y Asiria alrededor del año 2000 a C., hasta Leonardo da Vinci

hizo un dibujo para ilustrar el libro 'La Divina Proporción' del matemático Luca Pacioli, (Tunuevainformacion, 2020), se halla presente en el libro "Elementos de Geometría" de Euclides de Alejandría el cual brinda la siguiente definición "Se dice que una recta está dividida en media razón y extrema razón cuando la longitud de la recta total es al segmento mayor, como el segmento mayor es al segmento menor" (ProporcionAurea.com, 2020)

Algunas Propiedades Matemáticas del número Áureo según (Garíjo & María, 2017) son:

$$\Phi - 1 = 1/\Phi \tag{11}$$

$$\Phi^n = \Phi^(n-1) + \Phi^(n-2)$$
 (12)

$$\Phi = \sqrt{1 + \Phi} \tag{13}$$

$$\Phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \cdots}}}}$$
 (14)

$$\Phi = 1 + 1/(1 + 1/(1 + 1/(1 + \cdots))) \tag{15}$$

Johannes Kepler descubrió que existe relación entre los números de Fibonacci y el número áureo (Chacón, 2014), ya que mientras más tienden a infinito los términos de la serie de Fibonacci, la proporcionalidad entre dos números consecutivos se acerca a Phil. 6180, es decir:

$$f(n+1)/f(n) = 1.6810 = \Phi$$
 (16)

Existen varias aplicaciones de la proporción áurea (Chacón, 2014), (Garíjo & María, 2017), (Tunuevainformacion, 2020) y (Toledo, 2004)

F. Proporción Áurea de la Mano

La proporción áurea se encuentra presente en el cuerpo humano y en la mano (Arteaga, 2001) (Wang, Ma, Jin, & Bin ,2017), de acuerdo con Arteaga (2001) "tomando la medida de menor a mayor la falange última de los dedos está en proporción áurea respecto a la siguiente, y está a la siguiente".

Es evidente que no todas las personas tienen las dimensiones exactamente en la proporción phi, pero el promedio general tiende hacia phi (Phiproporcion, 2020)

Los huesos de los dedos de la mano formados por los metacarpianos y las tres falanges; cada hueso guarda la proporción áurea y cada hueso es φ veces menor que el anterior (Díaz, 2017) y (Evon y Hamed, 2018)

según los hallazgos de Priyanka, Pratima, Nikhita & Hemant (2019), los dedos índice medio y anular, se hallan en una serie de Littler, es decir, una serie de 1, 1.3 y 2,3, también en su investigación muestran que el dedo meñique se encuentra en una secuencia de Fibonacci.

Otro dato muy significativo aportado por Park, Fernandez, Schmedders & Cohen (2003) es que afirman que "las longitudes de los huesos metacarpiano y falángico siguen la relación de Fibonacci", en su estudio se tomaron radiografías estándares de las manos de 100 voluntarios. La longitud de la falange proximal se restó de la suma de las longitudes de las falanges media y distal y la longitud del metacarpiano se restó de la suma de las longitudes de las falanges media y proximal en todas las muestras, demostrando la proporción áurea de la mano

Basados en la proporción áurea Manimala. & Kumar (2014) llevó adelante un estudio para predecir 7 características de la mano derecha e izquierda, en la investigación eligió a 153 sujetos (78 hombres y 75 mujeres) entre las edades de 22 y 25 años sin antecedentes de lesiones en las manos y de acuerdo con los resultados que alcanzó el investigador, logró estimar las 7 características de la mano izquierda y la mano derecha con una precisión de más del 91% tanto para las muestras masculinas y femeninas

2 MATERIALES Y MÉTODOS

Inicialmente se procedió a establecer ciertas limitantes en base a la complejidad del procesamiento de imágenes y la utilidad del uso de gestos de la mano, estas son: no se emplearán dispositivos especiales y se trabajará con imágenes bidimensionales obtenidas a partir de una cámara monocular simple sin calibración previa que sean claramente diferenciables y contrastables con el fondo fijo, que no tengan sombra y con una adecuada iluminación, se asume que los gestos vendrán de una mano normal derecha que no presente deformación o carencia de dedos ni hagan uso de crema, colorante, guante u otros que modifiquen o alteren su aspecto, se trabajará con cualquier tamaño de mano que estén en postura vertical de la mano derecha, con la palma hacia la cámara, con los dedos hacia arriba sin solapar y sin ninguna rotación y que se destine una zona exclusiva para la interacción de la mano

El método de reconocimiento de gestos de la mano comprende las siguientes etapas:

- Obtención de datos
- Segmentación
- Obtención de contornos y regiones
- Obtención de Proporciones y puntos de interés

G. Obtención de Datos

Se asumió que se obtendrá las imágenes de entrada a partir de señal de video, desde donde se van obteniendo la imagen del gesto en cada fotograma del que luego se obtiene su matriz de píxeles, se define una región de interés fija de toda la imagen para interactuar con el gesto,

por lo que luego se obtiene los datos de esa región de interés ROI lo que permite reducir el tiempo de procesamiento al eliminar la mayor parte de la imagen innecesaria, debido a que una mano realizaría el gesto y la otra sostendría el dispositivo, entonces la ROI se definió que debe estar ubicada en la parte superior derecha, aunque es altamente flexible y se puede trasladar a otro lugar deseado.

La primera imagen que se obtendrá en el ROI debe ser del fondo sin la mano, lo que permitirá una adecuada segmentación, si por diversos factores existe cambio de fondo p.e. debido a la iluminación otro entonces simplemente se volvería a capturar la imagen del fondo para reiniciar el proceso de captura de gestos con el nuevo fondo

Posterior a la captura de la imagen del fondo, se comienza con un proceso continuo de captura de la imagen que contiene el gesto de la mano, estas imágenes cada cierto intervalo de tiempo, esta imagen se compara con la del fondo y se comienza el proceso de segmentación

H. Segmentación de la imagen de la mano

Una vez obtenida los datos de la imagen del fondo y la imagen del gesto de la mano dentro de la región de interés, se pasa a la etapa de segmentación del objeto, consistente aislar la imagen del gesto de la mano que se desea conocer, del fondo o elementos del fondo que la rodean, para ello inicialmente se realiza un desenfoque para la mejora de la imagen mediante la eliminación del ruido mediante un proceso de desenfoque de imágenes aplicando un operador de vecindad, donde el valor de un pixel se calcula a partir de sus píxeles vecinos, en el caso de un filtro gaussiano, existe un peso que se asigna a los pixeles vecinos del píxel que se desea calcular a partir de una matriz de convolución, estos pesos se asignan en forma de una curva de campana alrededor del píxel central, de ahí su nombre de filtro gaussiano, donde tienen mayor peso los píxeles más cercanos al píxel analizado y los píxeles más alejados al píxel analizado tienen menores pesos.

Luego se convierte la imagen con el fondo y la del gesto a escala de grises aplicando la ecuación de la luminancia a cada píxel, la cual viene dada por:

$$Y=0.299*R+0.587*G+0.114*B$$
 (17)

Posteriormente se resta la imagen con el gesto de la mano de la imagen del fondo eliminara la mayor parte de los pixeles del fondo y se procede a llevar la a una escala de solo blanco y negro, es decir una imagen binaria empleando una segmentación de tipo binario mediante un análisis basado en la intensidad de los pixeles de la imagen, de forma que aquellos pixeles en escala de grises que superen un cierto límite de intensidad se transforman a pixeles de

color blanco y los que no superen el límite se transforman a pixeles de color negro, posteriormente para eliminar el ruido en la imagen se aplica un aplica un filtro de desenfoque, un proceso de dilatación y erosión de la imagen para mejorar la calidad de la imagen segmentada obtenida

I. Obtención de contornos y regiones

A partir de esta etapa se comienza a obtener los descriptores de la imagen obteniendo primeramente el contorno de la imagen del gesto de la mano, para ello inicialmente se optó por reducir la matriz de la imagen de la imagen obtenida debido a la cantidad de pixeles presentes, por tanto al contar con la imagen binarizada en color blanco y negro, al reducir la dimensión de esa matriz, no se pierde la esencia al calcular el contorno y es útil para acelerar los cálculos, con la matriz reducida se procede con la detección de contornos, pudiendo por diversos factores existir varios contornos, por lo que se obtiene solo el contorno de mayor diámetro y área el cual se corresponderá con el contorno del gesto de la mano

Una vez que se halló con éxito el contorno de la mano, se procede a transformar las coordenadas de los puntos detectados en la matriz reducida, a su correspondiente posición dentro de la matriz e imagen original

J. Obtención de Proporciones y puntos de interés

Inicialmente se procedió a obtener el rectángulo que contiene a la mano que se está ubicado en:

Rectángulo de la mano límite derecho = pixel del límite derecho del contorno de la mano

Rectángulo de la mano límite izquierdo = pixel del límite izquierdo del contorno de la mano

Rectángulo de la mano límite superior = pixel del límite superior del contorno de la mano

Rectángulo de la mano límite inferior = pixel del límite inferior del contorno de la mano

Posteriormente se estima la región que contiene a los dedos a partir del rectángulo estimado que contiene la mano, se estima a partir del porcentaje de proporción de la palma de la mano con respecto a la mano total empleando el cálculo de proporciones Áureas de la mano, es decir, la longitud de las falanges sigue aproximadamente y en promedio las proporciones basadas en la proporción áurea, siguiendo la serie de Fibonacci para el dedo meñique y la serie de Littler para los demás dedos, entonces se tiene las siguientes proporciones siguiendo la serie de Littler: 1 proporción para la falangeta, 1,3 proporciones para la falangina, 2,3 proporciones para la falange y 3,6 proporciones para el metacarpiano, haciendo un total de 8,2 proporciones desde la punta del dedo medio hasta la base del metacarpiano de la mano.

Emplearemos para los cálculos un valor de proporción que es igual al total de la altura de la imagen de la mano extendida divido entre 8,2, por tanto se asume que el porcentaje ocupado a lo alto por el rectángulo que contiene los dedos de las manos, ocupa en principio las proporciones que ocupa el dedo medio ya que los demás dedos están aproximadamente a la misa altura, haciendo un total de 4,6 proporciones de las 8,2 proporciones que ocupa toda la mano incluyendo el metacarpo siguiendo la proporción áurea de la mano, y aplicando una regla de tres se tiene que la altura ocupada por los dedos representa el 56,097% de la altura de la región mano

Luego se obtiene la altura región de la palma que está ubicada en la zona contigua a la región de los dedos

Posteriormente se procede a buscar puntos candidatos a la cima y meseta de los dedos de la mano, donde a partir del contorno del gesto de mano detectado, se recorre todos los puntos, verificando su orientación y cambios de dirección, de forma de hallar aquellos puntos máximos y mínimos que serían candidatos a representar la punta y mesetas de los dedos de la mano, esta búsqueda se realiza solo en la región de los dedos de la mano

El procedimiento anterior no garantiza obtener todos los puntos cima de los dedos, ya que en caso de que los dedos no estén separados, o no estén extendidos entonces se tiene una alta probabilidad de no ser detectados, por tanto paralelamente al procedimiento anterior se debe buscar puntos contiguos que se encuentren en el mismo plano lo que permite obtener varios puntos probables a corresponderse con la cima de los dedos

Luego en el conjunto de puntos candidatos la cima se debe realizar un proceso de descartar algunos de estos puntos, para ello asume la existencia de una proporción insuperable por la estructura de la mano en el grosor de los dedos, para ello se observó que la mitad de la proporción de la falangeta cubre una distancia apropiada para la búsqueda de vecinos cercanos a la cima de un dedo, entonces en base a esa proporción, analizamos a la distancia existente entre los puntos vecinos y se asume al punto central como el punto cima de ese dedo

Finalmente se realiza una comparativa entre los primero puntos cima de los dedos y el segundo grupo de puntos candidatos para descartar duplicidades

Con el procedimiento anterior se garantiza detectar al menos los puntos de la cima de los dedos índice, medio, anular y meñique, sin embargo es probable que fruto del procedimiento anterior, falte detectar la cima del dedo pulgar, debido a que se dobla de forma diferente, para detectar esto se recurrió a crear algunas relaciones basadas en la proporciones áureas de la mano, considerando que la proporción entre el alto y el ancho de la mano es aproximadamente uno cuando la mano esta con todos los

dedos totalmente extendidos, en cambio cuando la proporción supera ese límite cuando la mano esta con el pulgar doblado, siempre y cuando no se hayan detectado los cinco cimas de los dedos fruto del procedimiento anterior, por último cuando está por debajo de ese límite es altamente probable que la mano esté con todos los dedos recogidos, es decir, la mano esta con el puño cerrado

Finalmente, mediante un cálculo trigonométrico también se procede a obtener el Ángulo formado entre dos dedos para verificar si los dedos están juntos o separados

K. Interpretación del gesto

La última etapa del método es la interpretación del esto, para ello primeramente se construyó un modelo que represente al gesto de la mano para almacenar, recuperar y procesar rápidamente los gestos de la mano, para construir el modelo se empleó el enfoque de sistemas en base a las propiedades de la mano, cuyo modelo se puede apreciar en la siguiente figura:

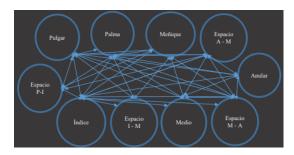


Figura 1: Modelo de gesto de la mano Fuente: Elaboración propia

Entonces basado en el análisis y modelo anterior se asume la representación del estado del gesto de una mano siguiendo el modelo:

$$G = \{d_1, d_2, d_3, d_4, d_5, e_1, e_2, e_3, e_4\}$$
 (18)

Donde:

G: Gesto de la mano

d₁ a d₅: postura de cada dedo cada de meñique al pulgar

 \mathbf{e}_1 a \mathbf{e}_5 : estado espacio entre los dedos desde meñique al pulgar

Donde a cada combinación de estados de los componentes de la mano, le corresponde un solo gesto, por tanto definimos los gestos gesto de la mano, como el espacio donde los componentes de la mano se encuentran en un estado diferente, es decir

Gestos=
$$\{(G_1,gesto_1),(G_2,gesto_2),\ldots,$$

 $(Gn,gesto_n)\}$ (19)

Donde se representa los valores de los estados de un dedo como $d=\{0,1,2\}$, donde 0 representa que el dedo está extendido, 1 representa que el dedo está doblado y 2 representa que el dedo está contraído

También se representa los valores de los estados de separación entre dos dedos como s={0,1}, donde 0 representa que no existe separación entre dos dedos, y 1 que existe separación entre dos dedos, el estado de la palma de la mano no requiere codificación

Por tanto, en base al modelo anterior inicialmente se construye un banco con los gestos que se desea reconocer para facilitar luego el reconocimiento

Finalmente se procede a la codificación del gesto del cual se ha obtenido todos sus descriptores y se procede con la comparación con los modelos almacenados previamente.

3. RESULTADOS

Para la implementación, mejora y prueba del método de reconocimiento de gestos de la mano se desarrolló un prototipo funcional con OpenCV, C# y Unity, se decidió emplear Unity 3D por su amplio uso en sistemas virtuales, de realidad aumentada y desarrollo de videojuegos ya que tiene una comunidad de usuarios muy alta y además tiene la capacidad de exportar a diversas plataformas como Linux, Windows, IOS, Android, Web, Xbox, etc.

A nivel de hardware se trabajó con un equipo portátil HP 245 G7 Cuya cámara VGA tiene una resolución 640×480 (0.307MP)

L. Implementación de las etapas del método

Primeramente, se trabajó en una interfaz para ir verificando los resultados obtenidos en cada etapa del método que brindó resultados satisfactorios, los cuales se pueden ver en la siguiente figura

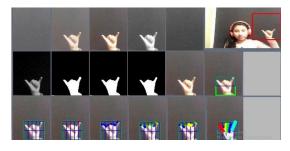


Figura 2 Resultado de las diferentes etapas del método Fuente: elaboración propia

En la siguiente figura se puede apreciar el resultado de aplicar el resultado del proceso de reconocimiento del gesto de la mano a la imagen de entrada.

Figura 3 Reconocimiento del gesto de la mano Fuente: elaboración propia

Experimentos

Para probar el método de reconocimiento de gestos de la mano, se llevó adelante experimentos con las siguientes características:

- Se trabajó con cinco personas de ambos géneros: dos varones y tres mujeres, para ver el funcionamiento del método con los diferentes géneros.
- Las personas tienen diferentes edades comprendidas entre los 5 hasta los 41 años (5 años, 11 años, 16 años, 38 años y 41 años), que permite verificar que el método funciona igual.
- Las personas debido a la edad y géneros tienen diferentes dimensiones y particularidades en las manos, lo que permite verificar que el método es independiente del tamaño de la mano.
- Se trabajó con diferentes tipos de fondos en las imágenes para ir variando las condiciones en las que el método va reconociendo el gesto de la mano.
- Se fue variando levemente el tema de las condiciones de la luz durante la captura de las imágenes de los gestos de la mano, para ir verificando el funcionamiento del método en diferentes condiciones.

1) Experimentos con gestos realizados por todos los usuarios

Se decidió trabajar para las pruebas con las personas con nueve gestos seleccionados que se consideraron más representativos y que los usuarios podían realizarlos sin complicación, por lo que se trabajó en el reconocimiento de los siguientes gestos seleccionados:

N°	Gesto
1	Mano Abierta con todos los dedos totalmente extendidos
2	Mano cerrada, con todos los dedos totalmente contraídos
3	Dedo Índice levantado, los demás dedos contraídos
4	Dedos Índice y medio levantados y separados, los demás dedos contraídos y juntos
5	Dedos Índice, medio y anular levantados y separados, los demás dedos contraídos y juntos
6	Dedos Índice, medio, anular y meñique levantados y separados, dedo pulgar contraído

7	Dedo meñique levantado, los demás dedos
	contraídos y juntos
8	Dedos índices y meñique levantado, los demás dedos
	Dedos índices y meñique levantado, los demás dedos contraídos, todos los dedos sin separación
9	
	Dedos pulgares y meñique levantado, los demás dedos contraídos, dedos pulgar e índice separados de
	los otros dedos

Tabla1: Gestos seleccionados para los experimentos **Fuente**: elaboración propia

A continuación, en las siguientes figuras se muestran algunas capturas de los experimentos llevados adelante con los diferentes usuarios

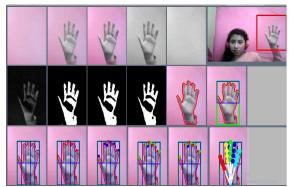
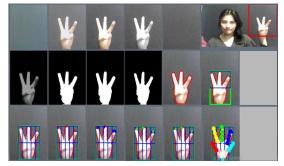



Figura 4 Reconocimiento del gesto por usuario1 Fuente: elaboración propia

Figura 5 Reconocimiento del gesto por usuario2 **Fuente**: elaboración propia

Figura 6 Reconocimiento del gesto por usuario 3 **Fuente**: elaboración propia

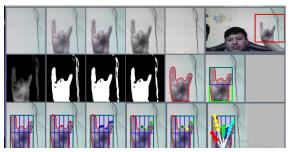
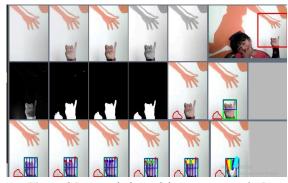



Figura 7 Reconocimiento del gesto por usuario 4 Fuente: elaboración propia

Figura 8 Reconocimiento del gesto por usuario 5 **Fuente**: elaboración propia

También se realizaron experimentos con diversos gestos de la mano sin embargo se puedo apreciar que no todos los usuarios podían realizar los mismos gestos ya que algunos se complicaba bastante con algunos gestos o simplemente no podían hacerlo, también no todos los de reconocimiento fueron exitosos teniendo problemas referentes al procesamiento de imágenes como fallas en la segmentación, debido a la luz, el fondo, etc.

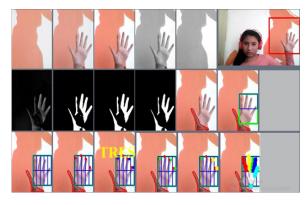


Figura 9 Casos fallidos Fuente: elaboración propia

2) Experimentos en control de Aplicaciones También se desarrollaron cinco aplicaciones con funciones específicas (control de traslación de un objeto 3D, control de rotación de la cámara, control de desplazamiento frontal de un avatar, control de

desplazamiento lateral de un avatar y control de diferentes acciones de un avatar) controlados por el gesto de la mano, con el fin de probar el funcionamiento del método en este tipo de entornos con algunos gestos y el desplazamiento de la mano.

Algunos resultados se pueden apreciar a continuación en las siguientes figuras:

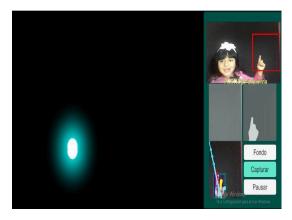


Figura 10 Control de traslación de objeto mediante gesto de la mano

Fuente: elaboración propia

Fondo
Captyrar
Pausar

Figura 11 Control de cámara mediante gesto de la mano Fuente: elaboración propia

Figura 12 Control de desplazamiento de avatar mediante gesto de la mano

Fuente: elaboración propia

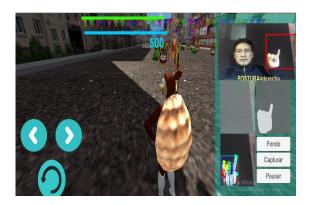


Figura 13: Control de videojuego mediante gesto de la mano Fuente: elaboración propia

Figura 14: Control de movimiento de avatar mediante gesto de la mano

Fuente: elaboración propia

En las pruebas se obtuvieron resultados satisfactorios empleando el método propuesto para el reconocimiento de gestos de la mano

Discusiones

A partir de los resultados obtenidos se observaron algunos aspectos relevantes en los experimentos realizados, los cuales son los siguientes:

En algunos gestos ingresados, existió presencia de algunos elementos pequeños dinámicos en el fondo al margen de la mano, sin embargo, esto no afectó el desempeño del método ante el reconocimiento del gesto, demostrando el método ser bastante sólido a este tipo de presencias.

Cuando existen fondos con marcados contrastes de figuras, la mano suele tener inadecuada segmentación durante el proceso de sustracción de la imagen del fondo con la imagen del gesto de la mano, el cual es un problema persistente del procesamiento digital de imágenes, aunque el método funciona en la mayoría de los casos con esta limitante.

Cuando existen variaciones en la intensidad de la luz durante la captura del gesto de la mano y una vez que se ha capturado la imagen de fondo, se suele afectar notoriamente a la segmentación de la imagen, por lo que este aspecto se soluciona obteniendo nuevamente la imagen del fondo y el método vuelve a trabajar adecuadamente en las nuevas condiciones con las limitantes planteadas.

Cuando el gesto se ingresa directamente desde la captura de una imagen, se tiene un solo resultado que se procesa adecuadamente, pero cuando el gesto de la mano se captura desde el video de la cámara, existen pequeñas variaciones, generalmente producidas por el movimiento leve casi imperceptible de la mano que ocasiona que se produzcan diversos contornos y por tanto variando los puntos de interés, que afecta al reconocimiento del gesto, ya que el vídeo recupera imágenes varias veces por segundo, este aspecto se soluciona en el prototipo estabilizando el gesto reconocido en un determinado tiempo que hace que su desempeño sea bueno en tiempo real.

Un dato interesante que se pudo advertir durante los experimentos es que no todos los usuarios pueden realizar los mismos gestos.

También se observó que es necesario una explicación previa y un breve periodo de acostumbramiento de los usuarios a los gestos para manipular las aplicaciones.

El control de aplicaciones con gestos de la mano es mucho más fácil y rápido para algunos usuarios que para otros usuarios.

Los usuarios sienten una alta satisfacción al controlar de forma innovadora una aplicación sin tocarla y con los gestos de la mano

A partir de los 250 experimentos realizados en una sesión aleatoria, se realizaron también otras sesiones, se contabilizó la cantidad de casos exitosos y casos fallidos de reconocimiento de gestos en promedio teniendo los siguientes resultados en porcentaje

Porcentaje gestos reconocidos= 92,85714%

Porcentaje gestos No reconocidos= 7,14286%

También se procedió paralelamente a medir los tiempos de reconocimiento del método, determinando que el método reconoce un gesto en un tiempo promedio de 11,77 milésimas de segundo.

Con estos datos se puede procedió a comparar el método propuesto con otros métodos:

Villa & Valencia & Berrio (2018) emplea el algoritmo SIFT "Scale Invariant Feature Transform" en Matlab teniendo un 54% porcentaje de reconocimiento mínimo y un máximo con guantes de 77%

Sandipgiri(2019) emplea una red neuronal convolucional CNN para la clasificación de imágenes logrando un rendimiento de 99% promedio de reconocimiento en caracteres y 100% en dígitos

Motoche(2018) emplea el sensor Myo Armband y una red neuronal artificial feedforward de tres capas, logrando 29.38 ms en tiempo de reconocimiento y 90.7% promedio de reconocimiento.

Shuai(2016) emplea Kinect, filtro de kalman y gradientes logrando un rendimiento de 96.3 promedio de reconocimiento

Ronchetii(2016) trabaja con máquinas de Soporte Vectorial (MSV), Modelos Ocultos de Markov Machine Learning MHM y Modelos de Mixturas Gaussianas(GMM) logrando un rendimiento de 91.7% promedio de reconocimiento

Rojas (2021) entre 80 y 92% promedio de reconocimiento

Nadia(2021) emplea machine Learning mediante deep Learning con tensor flow y keras, además de un dispositivo Myo, Red Neuronal de Gated Recurrent Unit(GRU), trabaja con seis gestos de la mano logrando 82,15% promedio de reconocimiento

Berru (2019) aplica OpenCV, emplea Soporte Vectorial de Máquinas SVM y logra un 93.16% promedio de reconocimiento

Ortiz & Camargo (2020) emplean Machine Learning, logrando un 68% promedio de reconocimiento

Maqueda (2018) emplea Redes Neuronales Convolucionales (CNN) logrando un 99% promedio de reconocimiento.

Sharma, Mittal, Singh & Awatramani(2020) brindan una comparativa del rendimiento de varios métodos proporcionando los rendimientos máximos en SVM 92.87%, regresión logística 84,59%, nayve bayes 77,23%, Random Forest 98,3, K-Nearest Neighbours 95.81%, multilayer perceptron 98.31%, no proporciona los tiempos de reconocimiento

Por tanto, en base a la comparación con los datos obtenidos, se aprecia que el rendimiento del método propuesto es bastante satisfactorio en tiempo y porcentaje de reconocimiento en comparación con los otros métodos, aunque es necesario hacer notar que muchos de los trabajos revisados no presentan el tiempo promedio en el que se realiza los procesos de reconocimiento o presentan contrastaciones con otros métodos.

4 CONCLUSIONES

La investigación aporta una solución innovadora aplicando la proporción áurea para la reconstrucción del gesto de la mano que emplea la proporción áurea a la mano en base a las series de Littler y Fibonacci para determinar la postura de los dedos y por tanto realizar el reconocimiento del gesto de la mano en base a los puntos límites de los dedos

El método reconoce los gestos a partir de una imagen obtenida de una cámara monocular sin calibración previa y de baja resolución sin importar el tamaño de la mano, género o edad del usuario.

El método aporta un modelo para el almacenamiento de gestos de la mano empleando el enfoque de sistemas.

El método presenta estrategias de aceleración en diferentes etapas del método como la reducción de matrices, detección reducida de puntos de contorno y otras estrategias para acelerar el reconocimiento y buscando un reconocimiento en tiempo real.

Se logró obtener un prototipo para probar el método, construido sobre un engine altamente utilizable como es unity3d, que permite obtener productos sobre diversas plataformas como Linux, Windows, Android, iOS, Xbox, etc.

Se realizaron experimentos que resultaron satisfactorios en 5 aplicaciones que se construyeron para probar el método desde videojuegos y sistemas de realidad virtual, teniendo el método propuesto un tiempo y porcentaje de reconocimiento satisfactorio.

REFERENCIAS

Andrade F. (2016) Un enfoque inteligente para el reconocimiento de gestos manuales. Buenos Aires. Universidad Nacional del Centro.

Ansari F. (2017) Hand Gesture Recognition using fusion of SIFT and HoG with SVM as a Classifier, Septiembre 2017. International Journal of Engineering Technology Science and Research. Vol. 4. Pág. 913-922

Ariel M. (2010) Seguimiento 3D de la mano

Arteaga A. (2001) Aspectos Estéticos de la Divina Proporción, Universidad Complutense de Madrid. Tesis Doctoral. ISBN: 84-669-1867-1. Madrid. España

Arranz F. Liu Q. & Lopez J. (2012) Interacción persona Computador basado en el reconocimiento visual de manos. Madrid. Universidad Complutense de Madrid.

Barros N. (2014) Algoritmos de Reconocimiento de Gestos de La Mano Basado en Tecnología Kinect. Universidad Técnica Estatal De Quevedo. Quevedo-Los Rios-Ecuador Universidad Peruana de Ciencias Aplicadas, Lima. disponible en: h ttps://conadisperu.gob.pe/observatorio/wp-content/uploads/2021/08/R econocimiento-de-gestos-estaticos-del-lenguaie-de-senas.pdf

Chacón M. (2014) Secuencia Fibonacci y Productos. Análisis del comportamiento del consumidor frente al número áureo. Universidad San Francisco de Quito. Quito, Ecuador.

Cruz A. (2019) Software de Realidad Virtual para la manipulación de datos LIDAR mediante el uso de Interfaz Natural de Usuario. Tesis doctoral en Tecnología Avanzada, Instituto Politécnico Nacional. Querétaro

Díaz J. (2017) Estética y Belleza, Proporción Áurea. Academia Chilena de Medicina y Cirugía Estética. [en Línea]. disponible en http://www.academiamedicinaestetica.cl/assets/estetica-y-belleza,-pro porcion-aurea-2017.pdf

Evon A. y Hamed S. (2018) Un modelo biométrico matemático del cuerpo humano usando la proporción áurea: un nuevo algoritmo. Intechopen. [en Línea]. disponible en: https://www.intechopen.com/books/machine-learning-and-biometrics/a-human-body-mathematical-model-biometric-using-golden-ratio-a-new-algorithm

García Cortés D. (2014). Reconocimiento de Gestos de Manos como Mecanismo de Interacción Humano-Computador. Bogota. Universidad Nacional de Colombia.

Garíjo I. & María J. (2017) Revista Vida Científica. 100cias. pág.49-58

Huitzil I., Pajaro J., Ramirez L. (2017) Test of a Myo Armband. Universidad Politécnica de Amozoc. Revista de Ciencias Ambientales y Recursos Naturales. Vol.3 No.10 48-56.

Hutchison A. & Hutchison R. (2010) Fibonacci, littler, and the hand: a brief review. Hand (New York, N.Y.). 5(4), 364–368. https://doi.org/10.1007/s11552-010-9268-6

Kelly D., McDonald J. & Markham C. (2009) Pattern Recognition Letters. Elservier. disponible en: www.elsevier.com/locate/patrec

Manimala S. & Kumar C. (2014) Anticipating Hand and Facial Features of Human Body using Golden Ratio. International Journal of Graphics & Image Processing (IJGIP). 4. 15.G. Eason, B. Noble

Maqueda Nieto Ana Isable (2018), From Traditional Multi-stage Learning to end-ti-end Deep Learning for computer vision Applications, Tesis Doctoral, Universidad Politécnica de Madrid, madrid, disponible en: https://oa.upm.es/66779/1/ANA_ISABEL_MAQUEDA_NIETO.pdf Motoche C.(2018) Reconocimiento de gestos de la mano en tiempo real usando señales electromiográficas y redes neuronales artificiales. Escuela Politécnica Nacional, Quito. disponible en: https://bibdigital.epn.edu.ec/bitstream/15000/19598/1/CD-8996.pdf

Nadia Nasri (2021), Hand Gesture Recognition Using sEMG and Deep Learning, Tesis Doctoral en Informatica, Universidad de Alicante, 2021, disponible en:

http://rua.ua.es/dspace/bitstream/10045/121510/1/tesis_nadia_nasri.p dfNuñez Moreno J. (2019) Análisis de movimiento humano

mediante dispositivos RGB-D. Universidad Rey Juan Carlos. Madrid.

Berru B. (2019) Reconocimiento de gestos estáticos del abecedario Odio A. (2015) LaGer: Lenguaje para descripción de gestos de la lengua de señas peruana utilizando cámaras de baja resolución. bidimensionales y tridimensionales. Tecnológico de Costa Rica.

Ortiz Nelson & Camargo Jorge(2020) Modelo computacional para reconocimiento de lenguaje de señas en un contexto colombiano, Instituto Tecnológico Metropolitano, vol. 23, núm. 48, pp. 197-232, disponible en https://www.redalyc.org/journal/3442/344263272011/html Park A., Fernandez J., Schmedders K. & Cohen M. (2003) The Fibonacci sequence: Relationship to the human hand. The Journal of hand Surgery. Vol. 28. P157-160. January 01. https://doi.org/10.1053/jhsu.2003.50000

Peralta S. (2012) Interfaz de Lenguaje Natural usando Kinectic. México. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional.

Petersen N. & Stricker D. (2009) Continuous Natural User Interface: Reducing the Gap Between Real and Digital World. IEEE International Symposium on Mixed and Augmented Reality. Science and Technology Proceedings.

Phiproporcion (2020) La Proporción Áurea-El número de oro Φ Phi 1,618. [en línea]. Disponible en https://www.proporcionaurea.com/vida/manos-y-pies-humanos/Pi nto R., Borges C., Almeida A. & Iális P. (2019) Reconocimiento estático de gestos manuales basado en redes neuronales convolucionales. Revista de Ingeniería Eléctrica e Informática, vol. 2019. ID de artículo 4167890. 12 páginas. https://doi.org/10.1155/2019/4167890

Plouffe G. & Cretu A. (2015) Static and Dynamic Hand Gesture Recognition in Depth Data Using Dynamic Time Warping

Priyanka K., Pratima G., Nikhita G. & Hemant J. (2019) A Compendium of Fibonacci Ratio. Journal of Clinical and Diagnostic. Research. Nov. Vol-13(11): AB03-AB10.

ProporcionAurea.com (2020) La Proporción Áurea. [en Línea]. disponible en www.proporcionaurea.com

Realpe G.(2013) Reconocimiento del Lenguaje de Señas Manuales con el Kinect. Universidad de los Andes. Bogotá Colombia.

Richard B. (1980) Put-that-there: Voice and gesture at the graphics interface. Proceedings of the 7th annual conference on Computer Graphics and interactive techniques, 262–270.

Rojas Vargas Douglas Joel (2021), Sistema de reconocimiento de la Lengua de señas Boliviana Red Neuronal recurrente RNN, Universidad Católica Boliviana, Junio, disponible en: https://www.apovoeinclusion.org/wp-content/uploads/2022/03/Articulo_LSBv2-1.pdf

Ronchetii F. (2016) Reconocimiento de gestos dinámicos y su aplicación al lenguaje de señas. tesis doctoral en Ciencias Informáticas. Universidad Nacional de la Plata. disponible en http://sedici.unlp.edu.ar/handle/10915/59330#:~:text=La%20capt ura%20y%20reconocimiento%20de,se%C3%B1as%2C%20entre %20otras%20aplicaciones%20de

Roussos A., Theodorakis S., Pitsikalis V. & Maragos P. (2013). Dynamic Affine-Invariant Shape-Appearance Handshape Features and Classification in Sign Language Videos. Journal of Machine Learning Research 14, pag. 1627-1663

Ruchi G. & Premanand K. (2015). Real time Finger Tracking and Contour Detection for Gesture Recognition using OpenCV.

International Conference on Industrial Instrumentation and Control. 974-977.

Sandipgiri G. (2019). Real Time Static Gesture Detection Using Machine Learning. The Faculty of Graduate Studies Laurentian University Sudbury. thesis of Master of Science in computational Sciences, Ontario. Canada, disponible en: https://zone.biblio.laurentian.ca/bitstream/10219/3468/1/Thesis-Sandip%20Goswami.pdf

Sharma Ashish, Mittal Anmol, Singh Savitoj & Awatramani Vasudev (2020). Hand Gesture Recognition using Image Processing and Feature Extraction Techniques. Science Direct. https://doi.org/10.1016/j.procs.2020.06.022 Shuai Y. (2016) Robust human computer interaction using dinamyc hand gesture recognition. thesis for Doctor of Philosophy. University of Wollongong. julio disponible en: https://core.ac.uk/download/pdf/81226984.pdf

Steve M. (2001) Intelligent image processing. New York: IEEE John Wiley and Sons.

Thangali A., Nash J., Sclaroff S & Neidle C. (2011) Explotación de las restricciones fonológicas para la inferencia de formas de manos en video ASL. Universidad de Boston.

Toledo Y. (2004) Sección Áurea en Arte, Arquitectura y Música. Universidad Politécnica de Madrid de Castilla. Toledo. disponible en http://matematicas.uclm.es/ita-cr/web_matematicas/trabajos/240/La_s ección aurea en%20arte.pdf

Torres M. (2010) Reconocimiento gestual mediante técnicas avanzadas de visión por computador. Soportes Audiovisuales e Informáticos.

Tunuevainformacion (2020) El Número de Oro o Divina Proporción, presente en el cuerpo humano, la naturaleza, el arte o la música [en línea]. Disponible en: https://www.tunuevainformacion.com/etica-filosofia-de-vida/532-el-n umero-aureo-o-la-divina-proporcion-presente-en-el-cuerpo-humano-l a-naturaleza-el-arte-o-la-musica.html

Villa B. & Valencia V. & Berrio J. (2018) Diseño de un sistema de reconocimiento de gestos no móviles mediante el procesamiento digital de imágenes Digital. Prospectiva. 16. 41-48. 10.15665/rp.v16i2.1488, disponible en https://dialnet.unirioja.es/servlet/articulo?codigo=6836702

Wigdor D. & Dennis. (2011) Brave Nui World: Designing Natural User Interfaces for Touch and Gesture. Morgan Kaufmann Publishers.

Wang N., Ma J., Jin D. & Bin Y. (2017) A Special Golden Curve in Human Upper Limbs' Length Proportion: A Functional Partition Which Is Different from Anatomy. BioMed Research International. vol. 2017. Article ID 4158561. 6 pages. 2017. https://doi.org/10.1155/2017/4158561

Zheng Zepei (2022).Human Gesture Recognition in Computer Vision Research. SHS Web of Conferences 144, 03011 (2022). https://doi.org/10.1051/shsconf/202214403011

LA COMPUTACIÓN AFECTIVA Y LA EDUCACIÓN

Santos Ireneo Juchasara Colque, Ph.D sijucol@gmail.com
Ingeniería Informática
Universidad Nacional "Siglo XX"
Llallagua - Bolivia

Resumen- La computación afectiva busca crear sistemas capaces de reconocer, interpretar y simular emociones humanas para mejorar la interacción hombre-máquina. Su aplicación en educación permite diseñar ambientes de aprendizaje que fomenten experiencias significativas desde una perspectiva tecnológico-emocional. Esta revisión analiza la evidencia sobre el impacto de la computación afectiva en contextos educativos reales. Las emociones influyen en procesos cognitivos centrales para el aprendizaje. Se han desarrollado técnicas de detección automática de estados afectivos mediante reconocimiento facial, vocal y de señales fisiológicas. Los sistemas tutores afectivos adaptan su comportamiento a las emociones de los estudiantes para motivarlos. Estudios previos muestran mejoras en desempeño, concentración y motivación de estudiantes al implementar estos sistemas. Sin embargo, se requiere más investigación para comprender completamente el impacto de esta tecnología emergente y abordar desafíos éticos en su aplicación. La computación afectiva tiene un potencial significativo para mejorar la educación, pero se necesitan más estudios experimentales en contextos reales, colaboración interdisciplinaria y consideración de aspectos éticos para lograr una implementación efectiva.

Palabras clave: Computación afectiva, Detección de emociones, Educación, Motivación, sistemas tutores afectivos.

Abstract- Affective computing seeks to create systems capable of recognizing, interpreting and simulating human emotions to improve human-computer interaction. Its application in education allows us to design learning environments that promote meaningful experiences from a technological-emotional perspective. This review analyzes the evidence on the impact of affective computing in real educational contexts. Emotions influence cognitive processes central to learning. Techniques for automatic detection of affective states have been developed through facial, vocal and physiological signal recognition. Affective tutor systems adapt their behavior to students' emotions to motivate them. Previous studies show improvements in performance, concentration and motivation of students when implementing these systems. However, more research is required to fully understand the impact of this emerging technology and address ethical challenges in its application. Affective computing has significant potential to improve education, but more experimental studies in real-world contexts, interdisciplinary collaboration, and consideration of ethical issues are needed for effective implementation.

Keywords: Affective computing, Affective tutoring systems, Education, Emotion detection, Motivation.

1. INTRODUCCIÓN

La tecnología está avanzando a pasos agigantados y se puede apreciar cómo esto está influyendo y cambiando la forma de vida del ser humano. Una de las tecnologías emergentes que está tomando auge es la computación afectiva, cuyo objetivo es la implementación de dispositivos y sistemas capaces aptos para el reconocimiento, interpretación, procesamiento y/o simulación de las emociones humanas, mejorando así la interacción hombre – máquina (Juca Maldonado et al., 2018).

La computación afectiva se define como "el estudio y desarrollo de sistemas y dispositivos que puedan reconocer, interpretar, procesar y/o simular las emociones humanas" (Bosques Barcenes et al., 2018). En los últimos años, la aplicación de la computación afectiva en la educación ha despertado gran interés, dado su potencial para mejorar los procesos de enseñanza-aprendizaje.

Según Rodríguez Arboleda et al. (2017), la computación afectiva aplicada a la educación busca "diseñar ambientes de

aprendizaje ubicuos que permitan propiciar un aprendizaje significativo, contextual, experimental desde la perspectiva de la educación tecnológico-emocional" (p. 95). En esta línea, se han propuesto sistemas tutores afectivos que mediante el reconocimiento de emociones pueden adaptar su comportamiento para motivar y ayudar a los estudiantes.

Sin embargo, a pesar del creciente número de propuestas en computación afectiva para la educación, son pocos los estudios que reportan su implementación en contextos educativos reales. Como señalan García et al., (2021), "solo un pequeño porcentaje ha implementado los sistemas de CA en contextos educativos reales, mostrando su influencia en el aprendizaje" (p. 5).

El objetivo de este artículo es revisar sistemáticamente la evidencia disponible sobre el impacto de la computación afectiva en el ámbito educativo, analizando los resultados reportados en estudios que han probado sistemas afectivos en escenarios de aprendizaje reales.

Emociones y aprendizaje

Las emociones juegan un rol fundamental en los procesos de aprendizaje. Según Bosquez Barcenes et al. (Bosques Barcenes et al., 2018), "la emoción y el aprendizaje están muy relacionados: por una parte, la emoción es un medio importante para promover el aprendizaje y, por otra, las actividades que se realizan en el entorno de aprendizaje, influyen de una manera decisiva en el desarrollo de la afectividad en cada alumno" (p. 97). Las emociones impactan procesos cognitivos clave como la memoria, atención, motivación y toma de decisiones.

De acuerdo con Rodríguez Arboleda et al. (Rodríguez Arboleda et al., 2017), "la emoción está implícita en todo proceso racional. Las actuaciones del sujeto dependen de su contenido emocional interno y del entorno socio-emocional donde se desenvuelve" (p. 94). Por esto, el manejo adecuado de las emociones en el aprendizaje es fundamental.

Técnicas para detección automática de estados afectivos

En los últimos años se han desarrollado diversas técnicas para que las máquinas puedan detectar emociones automáticamente. Según Bosquez Arboleda et al. (2017), "se han realizado muchos esfuerzos para reconocer las emociones haciendo uso de diferentes medios como expresiones faciales, señales de habla, fisiológicas con la finalidad de interpretar estas emociones" (p. 99).

Algunas de las técnicas utilizadas son el reconocimiento facial, vocal, mediante señales fisiológicas y enfoques multimodales que combinan diferentes medios. Como señalan Juca Maldonado et al. (Juca Maldonado et al., 2018), "la mayoría de las aplicaciones están pensadas para ser utilizadas en dispositivos móviles y son de acceso gratuito, pero necesitan de internet para poder acceder a las grandes bases de datos de imágenes para realizar las comparaciones" (p. 34).

Sistemas tutores afectivos

Los sistemas tutores afectivos buscan adaptar su comportamiento a partir de las emociones detectadas en los estudiantes durante el aprendizaje. Bosques et al. (2018) explican que "la asistencia y retroalimentación por parte de agentes pedagógicos virtuales, favorece los aprendizajes autorregulados y complejos por parte de los estudiantes" (p. 98).

Por ejemplo, García et al. (2021) señalan que en las pruebas realizadas con sistemas afectivos "se han evidenciado mejoras en el desempeño académico de los estudiantes, concentración, aceptación del sistema y aprendizaje autopercibido" (p. 5).

2. METODOLOGÍA

La presente investigación fue bibliográfica porque tuvo como principio la consulta de tecnologías actuales y la ayuda de investigaciones anteriores acerca de la computación afectiva en la educación.

- Las fuentes de consulta fueron bases de datos de librerías digitales con artículos publicados en revistas.
- Se utilizó el motor de búsqueda Google Académico y el buscador de información científica Mendeley.
- Para almacenar y organizar los documentos se utilizó Mendeley.

3. RESULTADOS

En los últimos años, ha habido avances significativos en el campo de la computación afectiva. Por ejemplo, se han desarrollado algoritmos de aprendizaje automático que pueden detectar y clasificar emociones humanas a partir de señales físiológicas como la actividad cerebral, la frecuencia cardíaca y la conductancia de la piel. Además, se han creado sistemas que pueden simular emociones humanas y responder a ellas en tiempo real.

En cuanto a las perspectivas futuras, se espera que la computación afectiva tenga aplicaciones en una amplia variedad de campos, desde el cuidado de la salud hasta el entretenimiento. Por ejemplo, los sistemas de computación afectiva podrían utilizarse para mejorar el diagnóstico y tratamiento de trastornos mentales como la depresión y la ansiedad.

Diversos estudios han reportado impactos positivos en el aprendizaje tras la implementación de sistemas de computación afectiva en contextos educativos reales.

Según García et al., (2021), en las pruebas realizadas "se han evidenciado mejoras en el desempeño académico de los estudiantes, concentración, aceptación del sistema y aprendizaje autopercibido" (p. 5).

En tal sentido se podría resaltar los siguientes puntos principales:

Relevancia de la Computación Afectiva en la Educación

La computación afectiva, que se enfoca en el reconocimiento y aplicación de las emociones humanas en sistemas y dispositivos, se ha convertido en un tema de interés creciente en la educación. Ya que a partir de ello se puede aplicar en el rendimiento académico y detección de riesgos académicos.

La tecnología afectiva tiene el potencial de mejorar la interacción entre humanos y máquinas, lo que se refleja en su aplicabilidad en el contexto educativo.

Se destaca que las emociones juegan un papel fundamental en los procesos de aprendizaje. Las emociones pueden influir en aspectos cognitivos como la memoria, la atención, la motivación y la toma de decisiones.

Se han desarrollado diversas técnicas para que las máquinas puedan detectar emociones automáticamente. Estas técnicas incluyen el reconocimiento facial, vocal, señales fisiológicas y enfoques multimodales que combinan múltiples medios.

La mayoría de estas aplicaciones están diseñadas para dispositivos móviles y suelen ser de acceso gratuito, aunque requiere acceso a internet para utilizar bases de datos de imágenes y comparaciones.

Los sistemas tutores afectivos tienen como objetivo adaptar su comportamiento según las emociones detectadas en los estudiantes durante el proceso de aprendizaje.

La retroalimentación emocional proporcionada por estos sistemas ha demostrado mejorar el desempeño académico de los estudiantes, su concentración, aceptación del sistema y percepción de aprendizaje autoeficaz. Esta retroalimentación emocional busca motivar a los estudiantes y personalizar la enseñanza de acuerdo a sus necesidades y emociones.

La investigación destaca la importancia de la computación afectiva en la educación y su potencial para mejorar la experiencia de aprendizaje de los estudiantes. Se resalta el impacto positivo de los sistemas tutores afectivos que ofrecen retroalimentación emocional, lo que sugiere que la implementación de estas tecnologías en entornos educativos reales puede tener beneficios significativos en el aprendizaje y el desarrollo de los estudiantes. Sin embargo, se señala la necesidad de más estudios y la implementación de sistemas de computación afectiva en contextos educativos para comprender plenamente su influencia.

Discusión

La investigación sobre la computación afectiva en la educación ha revelado hallazgos significativos que subrayan la importancia de esta tecnología en la mejora de los procesos de enseñanza y aprendizaje. La relación intrínseca entre las emociones y el aprendizaje, como se ha destacado, sugiere que la incorporación de sistemas tutores afectivos en entornos educativos tiene el potencial de transformar la educación de manera positiva.

La detección automática de estados afectivos, a través de técnicas como el reconocimiento facial, vocal y señales fisiológicas, se ha convertido en una herramienta crucial para proporcionar retroalimentación emocional en tiempo real. Los resultados de estudios previos indican que esta retroalimentación emocional puede mejorar el desempeño académico, la concentración y la percepción de los estudiantes sobre su propio aprendizaje.

Sin embargo, a pesar de los avances y beneficios reportados, se debe destacar que existen desafíos y limitaciones en la implementación de la computación afectiva en contextos educativos reales. El acceso a bases de datos de imágenes y recursos tecnológicos, como la conectividad a Internet, son elementos fundamentales para el funcionamiento efectivo de estas tecnologías. Además, es esencial abordar preocupaciones éticas, como la privacidad y el consentimiento, al recopilar datos emocionales de los estudiantes.

4. CONCLUSIONES

En base a la revisión sistemática de la evidencia disponible, las conclusiones clave de esta investigación son las siguientes:

La computación afectiva es una tecnología emergente que tiene un potencial significativo para mejorar la educación al incorporar la detección y adaptación de emociones en entornos de aprendizaje.

Las emociones desempeñan un papel fundamental en los procesos de aprendizaje, y la retroalimentación emocional proporcionada por sistemas tutores afectivos puede influir positivamente en el desempeño y la motivación de los estudiantes.

Se han desarrollado diversas técnicas para la detección automática de estados afectivos, lo que brinda la oportunidad de personalizar la enseñanza y la retroalimentación en tiempo real.

La implementación exitosa de sistemas tutores afectivos en entornos educativos enfrenta desafíos relacionados con el acceso a recursos tecnológicos y la consideración de cuestiones éticas y de privacidad.

Se requiere más investigación y experimentación en contextos educativos reales para comprender completamente el impacto de la computación afectiva en la educación y su potencial para la mejora continua de los procesos de enseñanza y aprendizaje.

La investigación destaca el potencial de la computación afectiva como un campo prometedor en la educación, pero también subraya la necesidad de abordar desafios técnicos y éticos para lograr una implementación exitosa. El camino a seguir implica investigaciones adicionales y la colaboración entre educadores, tecnólogos y expertos en emociones para aprovechar al máximo las ventajas que la computación afectiva puede ofrecer en el ámbito educativo.

REFERENCIAS

Banafa, A. (2016). ¿Qué es la computación afectiva? https://www.bbvaopenmind.com/tecnologia/mundo-digital/que -es-la-computacion-afectiva/

Bosquez Barcenes, V., Sanz, C., Baldassarri, S., Ribadeneira Ramos, E., Valencia Medoza, G., Barragan Merino, R., Camacho-Castillo, Á., Shauri-Romero, J. y Camacho-Castillo, L. (2018). La computación afectiva: emociones, tecnologías y su relación con la educación virtual affective computing: emotions, technologies and their relationship with virtual education (1). Revista de investigación talentos, 5(1), 94-103. https://talentos.ueb.edu.ec/index.php/talentos/article/view/35

De Rus Arance, J. A. (2021). una primera aproximación hacia la computación afectiva en entornos de realidad virtual multi-modales e interactivos. 1-3.

Delgado Agudelo, D. M., Girón Timaná, D. F., Chanchi

Golondrino, G. E. y Márceles Villalba, K. (2018). Propuesta de una herramienta para la estimación de la satisfacción en pruebas de usuario, a partir del análisis de expresión facial. Revista Colombiana de Computación, 19(2), 6-15. https://doi.org/10.29375/25392115.3438

García, S., Mercado, G., Gil, J., López, D. y Garcés, L. (2021). computación afectiva y su efecto en el proceso de aprendizaje: una revisión sistemática de literatura. 1-6. https://doi.org/10.13140/rg.2.2.30145.58721

Guerrero, M. (2021). Reconocimiento de emociones en tiempo real.

Juca Maldonado, F. X., García Saltos, M. B., Burgo Bemcomo, O. B. y Navarro Silva, O. (2018). la computación afectiva y su influencia en las interfaces actuales del reconocimiento facial. revista metropolitana de ciencias aplicadas, 12, 28-35. http://remca.umet.edu.ec/index.php/remca

Torres-Carrión, P. V., Gonzalez-Gonzales, C. S., Barba-Guamán, L. R. y Torres-Torres, A. C. (2017). Experiencia Afectiva de Usuario(UAX): Modelo desde sensores biométricos en aula de clase con plataforma gamificada de Interacción Gestual. Cive, 6-11. http://riull.ull.es/xmlui/handle/915/6737

MODELO PREDICTIVO PARA IDENTIFICAR DELITOS DE ACOSO EN LA RED SOCIAL FACEBOOK APLICANDO BIG DATA

Leyna Roxana Salinas Veyzaga, Ph.D.

leynasud@gmail.com

Ingeniería Informática

Universidad Nacional "Siglo XX"

Llallagua, Bolivia

Resumen- El uso masivo de las redes sociales ha hecho que los delincuentes puedan usar estas tecnologías con la finalidad de cometer sus crímenes, uno de ellos es el acoso en línea. El objetivo es diseñar un modelo predictivo basado en Big Data para identificar delitos de acoso en la red social Facebook. Este modelo toma como dataset información extraída de los comentarios de publicaciones en Facebook, para utilizar un algoritmo de Machine Learning, teniendo como resultado un modelo de predicción que pueda presentar patrones de acoso y no acoso, los cuales se manifiestan en agresión verbal grave, como insultos, ataques racistas, ataques homofóbicos, etc.

Palabras clave- Big Data, Dataset, FacePager, Machine Learning, Matriz de confusión, Naive Bayes, Redes Sociales.

Abstract- The massive use of social networks means that criminals can use these technologies in order to commit their crimes, one of them is online harassment. The objective is to design a predictive model based on Big Data to identify harassment crimes on the Internet. social Facebook. This model takes as a data set information extracted from the comments of posts on Facebook, to use a Machine Learning algorithm, resulting in a prediction model that can present patterns of harassment and non-harassment, which manifest themselves in serious verbal aggression, such as insults, racist attacks, homophobic attacks, etc.

Keywords- Big Data, Confusion Matrix, Dataset, FacePager, MachinE Learning, Naive Bayes, Social Networks.

1. INTRODUCCIÓN

Con una primera observación los entornos sociales, las noticias, y multiplicidad de tareas cotidianas, se puede inferir que Internet tiene una importancia central que organiza el sistema de información en las sociedades actuales, y por tanto es clave realizar estudios de fenómenos en la red que posibiliten conocer el nuevo orden, funcionamiento y comprensión de una multiplicidad de fenómenos socio técnicos relacionadas a la red (Gómez & Farrera, 2019).

Actualmente para los criminales resulta mucho más sencillo actuar de manera digital que presencial, ya que ellos pueden operar creando perfiles falsos con el fin de atacar a sus víctimas

El acoso cibernético mediante las redes sociales es un tema que tiene un carácter innovador y que pretende disminuir los delitos por intermedio de las redes sociales, ya que las mismas son aplicaciones de esta última generación.

La cantidad de datos que se están moviendo y generando en las redes sociales es demasiado grande, ahí es donde ingresa el término de Big Data ya que permite analizar la información generada con la finalidad de predecir comportamientos futuros y tomar decisiones.

No existen investigaciones de predicciones de acoso en línea mediante técnicas de Machine Learning en la red social Facebook en Bolivia. Así se puede apreciar, que se necesita un procedimiento para identificar delitos de acoso en la red social Facebook aplicando Big Data.

El objetivo general de la presente investigación es diseñar un modelo predictivo para identificar patrones de comportamiento de personas que cometen delitos de acoso en la red social Facebook aplicando Big Data.

2.- MATERIALES Y METODOLOGÍA

Con el fin que persigue la investigación será una Investigación Exploratoria y corresponde a un tipo transformador utilizando el método Inductivo- deductivo. Tomando como población a personas exclusivamente que sufrieron acoso en la red social Facebook en Bolivia por medio de comentarios ofensivos y degradantes.

El sitio Guía anti-acoso, muestra la incidencia de acoso digital en Bolivia y brinda algunos consejos para actuar en caso de sufrir acoso digital en Facebook.

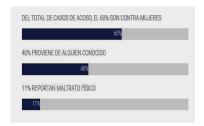


Figura 1. Incidencia de acoso digital en Bolivia Fuente: (internetbolivia, 2013)

Nota. Representa el porcentaje de incidencia del acoso en Bolivia. Tomado de https://internetbolivia.org/8m/

Al mismo tiempo este sitio web muestra los perfiles que son más vulnerables, los cuales son:

- Mujeres que se encuentran en una relación íntima con parejas de antecedentes violentos.
- Mujeres con perfiles públicos (periodistas, activistas, empresarias).
- Sobrevivientes de violencia física o sexual.

Según el sitio Sistema para la prevención de ciberacoso para el idioma español, el cual contiene recursos que son parte del Proyecto "Detección presuntiva de ciberacoso en redes sociales basado en el análisis de sentimientos".

El sitio contiene un corpus de términos con 13.430 términos únicos con sus respectivos pesos. La siguiente tabla muestra algunos términos con su peso respectivo.

N	Comentario	Etiqueta
1	horita que mi perro te limpie ese culo cagado puta cabrona y luego te vas a abotonar con mi perro mendiga perra callejera	1.0
2	Los que hacen chistes de lo que le ocurrió a esa señorita, nada bien, absolutamente nada bien en casa, verdad?	0.0
3	Como siempre hermosa y ricota mi amor siempre haciéndome babear con tu hermoso culito mi reina	1.0
4	El machismo en el área de la salud empieza cuando crees que por ser mujer soy la enfermera y no la doctora.	-1.0

Tabla 1. Algunos términos del corpus de Ciberacoso Fuente: Elaboración propia

Nota. Representa algunos términos del corpus con sus respectivos pesos. Tomado de https://cloudcomputing.ups.edu.ec/SCPSystem/faces/acerc a corpus.xhtml

Se extrajo comentarios de publicaciones de perfiles en base a una búsqueda mediante palabra clave, llegando a un total de 1196 comentarios para la construcción del conjunto de datos.

La presente investigación propone un modelo predictivo que utiliza técnicas de análisis de datos en Big Data, estás se enmarcan dentro de los procesos que comprenden la recolección, depuración, tratamiento, modelado y estudio de datos encaminados a la obtención de conclusiones útiles en

este caso será para identificar patrones de comportamiento de personas que cometen delitos de acoso en la red social Facebook

1) Recopilación de Datos, por la particularidad que presenta la investigación se recurrirá a la técnica Web Scraping. Se utilizó el software Facepager, que es un software automatizado para recolectar los datos de las redes sociales como Facebook, esta herramienta permite la obtención de los comentarios de un post de Facebook para que la información extraída pueda ser analizada. Se etiquetó con un 0 para ver si no existe acoso en un comentario de un post publicado; y un 1 para ver si existe acoso en un comentario de un post publicado, también se consideró los comentarios que son neutros y fueron etiquetados con un -1.

La siguiente tabla muestra algunos ejemplos que son acoso (1), no acosó (0) y neutro (-1)

Peso	Término
0.0162000575289	Puta
0.0125960602248	Quiero
0.0103446856503	Gente
0.0103331944324	Vida
0.0099205041536	Mierda
0.00968068833262	Amigo
0.00941831146553	Amo
0.00858364831772	Culo
0.00831919609048	Perro
0.00803216401749	Siento
0.00800279242667	Amiga
0.00800074496117	Madre
0.0069177313417	Ricota
0.00687980014533	Perra

Tabla 2. Ejemplos etiquetados de algunos comentarios extraídos **Fuente:** Elaboración propia

Nota. Representa algunos comentarios etiquetados. Elaboración propia.

2) Preprocesamiento de datos

Es muy importante preprocesar los datos extraídos de los comentarios de una publicación de Facebook, generalmente implica varias etapas con la finalidad de limpiar y preparar los datos para un análisis posterior. A continuación, se describe las técnicas para el preprocesamiento de datos: limpieza de datos; los comentarios extraídos podrían contener, caracteres especiales, o formatos no deseados como etiquetas HTML, para ellos se escribieron funciones para convertir los textos a minúsculas, eliminar caracteres especiales, eliminar las palabras vacías; Tokenización, se utilizó esta técnica, la cual permite dividir el texto en unidades más pequeñas, como palabras individuales o frases, para facilitar el análisis; finalmente, cada comentario se codifica en un vector numérico

que representa la frecuencia de cada palabra en el comentario. Se utilizó la técnica de conteo de términos (Count Vectorizer)

3) Análisis exploratorio

Antes de proceder con un análisis más profundo, es útil realizar visualizaciones preliminares como histogramas, nubes de palabras (word clouds) o gráficos de dispersión para entender mejor la distribución y patrones de los datos de los comentarios de Facebook.

La siguiente figura muestra la nube de palabras de los comentarios etiquetados como acoso (1)

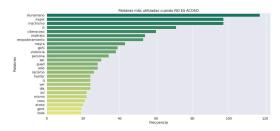
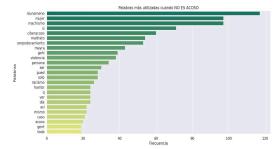


Figura 1. Nube de Palabras de los comentarios etiquetados como Acoso.

Fuente: Elaboración propia

Nota. Representa la nube de palabras de los comentarios etiquetados como acoso. Elaboración propia.


La gráfica 1 muestra la distribución de las Palabras más utilizadas cuando el comentario es etiquetado como acoso.

Gráfica 1. Distribución de palabras más utilizadas cuando es acoso. **Fuente:** Elaboración propia

Nota. Representa la distribución de palabras más utilizadas cuando es acoso.

Por otro lado, se tiene la distribución de las Palabras más utilizadas cuando No es acoso

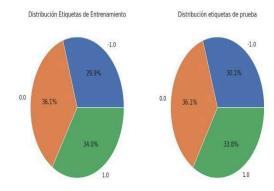
Gráfica 2. Distribución de las Palabras más utilizadas cuando No es acoso

Fuente: Elaboración propia

Nota. Representa la distribución de palabras más utilizadas cuando no es acoso.

4) Construcción del modelo predictivo, en la construcción del modelo se tiene las siguientes etapas:

Selección de algoritmo, en esta etapa se utilizan técnicas avanzadas de Big Data como el Machine Learning, se utilizó el Algoritmo Naives Bayes para el entrenamiento. Tomando la recopilación de términos únicos, teniendo como entrada el conjunto de palabras que aparecen en el comentario y produciendo como salida una lista de términos únicos.


Entrenamiento del modelo de predicción, con los datos codificados y etiquetados, se procede a entrenar el modelo con el algoritmo seleccionado.

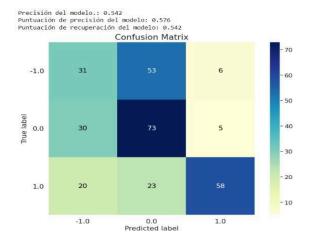
Para el entrenamiento se requieren los siguientes parámetros de entrada: se considera un 75 % para datos de entrenamiento y un 25 % para datos de prueba.

Comentarios de entrenamiento: 895

Comentarios de test: 299

La gráfica 3 muestra la distribución de las etiquetas de entrenamiento y de prueba.

Gráfica 3. Distribución de las etiquetas de entrenamiento y de prueba.


Fuente: Elaboración propia

Nota. Representa la distribución de etiquetas de entrenamiento y de prueba. Elaboración propia.

Evaluación del modelo, para la evaluación del modelo se utilizó la matriz de confusión, esta métrica permite evaluar el rendimiento del modelo. Una vez que el modelo está entrenado, se debe evaluar su rendimiento utilizando un conjunto de datos de prueba. Esto proporciona una idea de cuán bien generalizada está el modelo a nuevos comentarios no vistos.

3.- RESULTADOS

Una vez que el modelo fue entrenado con los 3 tipos de comentarios etiquetados con los datos separados tanto para las pruebas como para las predicciones, se tienen los siguientes resultados reflejados en la gráfica 4.

Gráfica 4. Matriz de confusión. **Fuente:** Elaboración propia

Nota. Representa la matriz de confusión del modelo. Elaboración propia

En la matriz de confusión se puede evidenciar de los 299 comentarios de pruebas:

El modelo predijo correctamente:

58 comentarios que es de acoso.

5 comentarios de No son de acoso

6 comentarios que son Neutros.

El modelo alcanza una precisión del 80-90% en la detección de acoso.

4.- CONCLUSIONES

En los resultados de la investigación se puede apreciar que las técnicas de Big data ayudan a predecir acoso cibernético y estas mismas son utilizadas para diferentes fines, tal es el caso de del trabajo de Maestría referido al uso de las redes Sociales intitulado: Análisis predictivo en Twitter para detectar patrones de personas con tendencia Hacktivista aplicando Big Data, Machine Learning y Deep Learning. En esta investigación, se pretende desarrollar un modelo que permita la identificación de vocabulario hacktivista, a través de la combinación de técnicas de data mining y algoritmos de machine learning y Deep learning, el resultado será la implementación de un modelo con bastante precisión en la identificación y clasificación del vocabulario que refiere a Hacktivismo.

REFERENCIAS

Gómez, D.M., & Farrera, R.A. (2019). El hacktivismo e Internet como territorio en disputa. Una mirada desde los marcos de acción colectiva. Estudios Políticos.

Joyanes Aguilar, L. (2013). Big Data. Análisis de grandes volúmenes de datos en organizaciones. México: Alfaomega.

Ramos-Vidal, I. (2015). Análisis de redes sociales: una herramienta efectiva para evaluar coaliciones comunitarias. *Revista de Salud Pública, 17(3)*, 323-336.

Raschka, S. (2019). Python Machine Learning "Aprendizaje automático y aprendizaje profundo con Python, scikit-learn y TensorFlow" (2° Edición ed.). Barcelona: Marcombo.

Rodríguez Devesa, J. M. (1974). Derecho Penal Español. *Parte General*, 75-75. Obtenido de https://dialnet.unirioja.es/servlet/articulo?codigo=8652894.

Rueda Buste, J. L. (2023). El uso de redes sociales y su incidencia en el delito de acoso sexual en adolescentes. *Artículo Científico de Abogado (a) de los Tribunales de la República*, 28.

Sanchez, L. (2003). Análisis de redes sociales: O cómo representar las estructuras sociales subyacentes. *Unidad de Políticas Comparadas*. Obtenido de https://www.researchgate.net/publication/260184831_Analisis_de_redes_socialeO_como_representar_las_estructuras_social_es_subyacentes

USO DE EXOESQUELETOS ROBÓTICOS PARA REHABILITACIÓN DE PACIENTES CON DIFICULTAD DE MOVIMIENTO

Jorge Villcáez Castillo, Ph.D.

jorgevill2015@gmail.com

Ingeniería Informática

Universidad Nacional "Siglo XX"

Llallagua – Bolivia

Resumen - El presente artículo científico se constituye en un artículo científico de revisión, puesto que realiza un estudio selectivo y crítico sobre información esencial de uso de exoesqueletos. El objetivo del presente artículo es el de proponer el uso de los exoesqueletos robóticos para la rehabilitación de pacientes con dificultad de movimiento, es decir, pacientes que padecen alguna dificultad en el movimiento de alguna lesión en alguna parte de su cuerpo; para lo cual se aplicó el tipo de investigación documental para realizar una revisión bibliográfica de artículos científicos sobre la temática seleccionada. La propuesta de este artículo se enfoca en la importancia del diseño, desarrollo y aplicación de dispositivos electromecánicos para la rehabilitación de movimientos en pacientes con dificultad motora; así de esta manera resaltar la importancia del avance de la tecnología en el área de la robótica.

Palabras clave: Control, Exoesqueleto, Movimiento, Rehabilitación, Robótica, Terapia.

Abstract - This scientific article constitutes a scientific review article, since it carries out a selective and critical study on essential information on the use of exoskeletons. The objective of this article is to propose the use of robotic exoskeletons for the rehabilitation of patients with movement difficulties, that is, patients who suffer from some difficulty in movement due to an injury in some part of their body; for which the type of documentary research was applied to carry out a bibliographic review of scientific articles on the selected subject. The proposal of this article focuses on the importance of the design, development and application of electromechanical devices for the rehabilitation of movements in patients with motor difficulties. Thus, in this way, highlight the importance of the advancement of technology in the area of robotics.

Keywords - Exoskeleton, Movement, Rehabilitation, Robotics, Therapy, Control.

INTRODUCCIÓN

La situación problemática identificada en las personas que sufren algún tipo de lesiones físicas especialmente que involucran la dificultad de movimiento de alguna parte del cuerpo, como puede ser los miembros superiores, los miembros inferiores y el tronco, las lesiones pueden presentar diversos problemas para su rehabilitación, ya que cada caso es único y puede involucrar diferentes factores. Algunos de los problemas comunes que pueden surgir durante el proceso de rehabilitación de una lesión incluyen:

- Dificultad en el movimiento de la parte afectada
- Dolor en la parte afectada
- Necesidad de rehabilitación
- Dolor y malestar
- Inflamación e hinchazón
- Pérdida de fuerza y flexibilidad
- Pérdida de masa muscular
- Limitaciones funcionales
- Miedo al movimiento

- Cumplimiento y paciencia
- Limitaciones estructurales
- Factores emocionales y psicológicos como la frustración, la ansiedad y la depresión.

Es importante contar con la supervisión de profesionales de la salud, como fisioterapeutas y médicos, para abordar adecuadamente estos problemas y garantizar una rehabilitación efectiva y segura. Cada lesión y paciente son únicos, por lo que el plan de rehabilitación debe adaptarse a las necesidades individuales de cada caso (Muñoz, Astudillo, Miranda, & Albarracin, 2018).

El planteamiento del problema fue ¿Cómo coadyuvar en la rehabilitación en pacientes con dificultad en el movimiento? Para ello el objetivo general planteado fue el de proponer el uso de los exoesqueletos robóticos para rehabilitación de pacientes con dificultad de movimiento. Para su concreción se plantearon los siguientes objetivos específicos: Realizar una investigación documental de lesiones físicas, exoesqueletos, robótica y rehabilitación, Determinar la importancia del uso de exoesqueleto en rehabilitación. Proponer el uso de exoesqueletos robóticos en la rehabilitación de pacientes con dificultad en el movimiento.

La justificación de la investigación enfoca la importancia del uso de exoesqueletos robóticos en la rehabilitación terapéutica de pacientes con dificultad de movimiento de alguna parte del cuerpo, pueden ser los miembros superiores, miembros inferiores o el tronco. La justificación en el aspecto social, resalta que los principales beneficiarios serán los pacientes que presentan dificultad de movimiento; la justificación en el aspecto técnico, resalta las potencialidades de la aplicación de la robótica en del diseño y desarrollo e implementación de exoesqueletos robóticos para la rehabilitación terapéutica de pacientes, que permitirá asistir de mejor manera al personal médico en rehabilitación. La justificación en el aspecto económico se resalta que mediante el uso de exoesqueletos, permitirá reducir costos en la rehabilitación de pacientes con dificultad de movimiento.

Como sustento teórico para el presente trabajo de investigación, se consideraron como conceptos fundamentales los conceptos de: lesiones físicas, robots para rehabilitación, exoesqueletos, rehabilitación asistida por exoesqueleto.

Las lesiones físicas:

Las lesiones físicas son daños o traumatismos que ocurren en el cuerpo debido a diferentes causas. Pueden ser el resultado de accidentes, caídas, práctica deportiva, actividades laborales, lesiones deportivas, actos violentos o cualquier otro evento que cause daño a los tejidos, músculos, huesos, articulaciones, órganos o piel. Algunas de las lesiones físicas más comunes incluyen (Guzmán Valdivia, Blanco Ortega, Oliver Salazar, & Azcaray Rivera, 2013):

- Fracturas: Rotura parcial o total de un hueso debido a una fuerza excesiva o impacto, como caídas, accidentes automovilísticos o lesiones deportivas.
- Esguinces: Lesión en los ligamentos que unen los huesos en una articulación, causada generalmente por una torcedura o estiramiento excesivo.
- Luxaciones: Separación o dislocación de los huesos en una articulación debido a un fuerte impacto o estiramiento.
- Contusiones: Hematomas causados por un golpe o compresión de los tejidos blandos, que resultan en el rompimiento de los vasos sanguíneos debajo de la piel.
- Cortes y heridas: Daño a la piel y tejidos subyacentes causado por objetos afilados o traumas contundentes.
- Lesiones musculares: Incluyen desgarros y distensiones musculares, que pueden ocurrir durante la práctica deportiva o el levantamiento de objetos pesados.
- Lesiones en la columna vertebral: Lesiones en las vértebras o los discos intervertebrales, que pueden

- tener graves consecuencias en la movilidad y la función nerviosa.
- Lesiones en la cabeza y el cerebro: Traumatismos craneoencefálicos, que pueden variar desde conmociones cerebrales hasta lesiones cerebrales traumáticas graves.
- Lesiones de tejidos blandos: Daño a los músculos, tendones y ligamentos que puede ocurrir debido a movimientos repetitivos, esfuerzo excesivo o malas posturas.
- Los accidentes cerebrovasculares son la primera causa de discapacidad en los países desarrollados y la tercera causa de muerte en el mundo son a causa de diferentes índoles

Además, se presentan los siguientes problemas aparte de los ya mencionados: Las lesiones en la médula espinal y enfermedades cerebrovasculares pueden producir una reducción parcial o total de las capacidades motoras. Debido a la pérdida de tejidos nerviosos el cerebro es incapaz de controlar ciertos músculos, que, aunque no están completamente dañados, inhiben sus funciones, haciendo necesario un programa de rehabilitación. Estas lesiones pueden provocar pérdida del control motor, grados variables de debilidad muscular y trastornos de la sensibilidad (Villarejo, Valencia Jiménez, Arango Hoyos, & Caicedo Bravo, 2017).

Robots para rehabilitación:

Los robots para rehabilitación pueden ser clasificados en tres principales grupos: para asistencia, movilidad y terapéuticos. Los robots terapéuticos también pueden clasificarse en dos grupos: miembros superiores y miembros inferiores. Los robots terapéuticos para miembros inferiores se pueden dividir en: exoesqueletos, entrenadores de la marcha y sistemas para rehabilitación de miembros inferiores. Los exoesqueletos fueron desarrollados para asistir a personas que tienen alguna debilidad en sus miembros inferiores determinados (Díaz Suárez, Moreno Moreno, Sanjuan Vargas, Prada García, & Torres, 2021).

Exoesqueleto:

Los exoesqueletos son estructuras externas rígidas que incorporan actuadores que permiten movimientos controlados y precisos además de sensores que brindan información del movimiento relacionada con el ángulo, la velocidad y la aceleración. Posibilitan en los más avanzados, capturar la actividad eléctrica muscular del paciente (señales electromiográficas) 0 electroencefalografía relacionada (EEG), intencionalidad del movimiento. Sus aplicaciones en tal sentido auguran un amplio espectro que va desde los procesos de rehabilitación de pacientes hasta la sustitución de las funciones vitales, por ejemplo, el andar en personas

con patologías permanentes (Broche Vásquez & Torrez Ouezada, 2020).

Los exoesqueletos para rehabilitación son dispositivos que permiten adaptar un robot manipulador a una extremidad del cuerpo con el fin de realizar procesos terapéuticos que brindan al paciente soporte durante rutinas de rehabilitación determinadas (Díaz Suárez, Moreno Moreno, Sanjuan Vargas, Prada García, & Torres, 2021).

Un exoesqueleto es un dispositivo mecánico externo diseñado para ser usado por una persona y que proporciona soporte y mejora en la movilidad. Su diseño se inspira en la estructura y función del esqueleto externo de los insectos y algunos animales para brindar una especie de "armadura" mecánica a los seres humanos.

Los exoesqueletos están diseñados para asistir o mejorar la capacidad de movimiento de una persona, ya sea aumentando la fuerza muscular, proporcionando estabilidad a las articulaciones o compensando limitaciones físicas. Estos dispositivos pueden ser utilizados con fines médicos y terapéuticos, como parte de la rehabilitación después de una lesión o para ayudar a personas con discapacidades físicas a mejorar su movilidad (Rivera, Bonilla, Moya, Mosquera, & Vitalyevich, 2019).

Rehabilitación asistida con exoesqueleto:

La gravedad y el tratamiento de las lesiones físicas dependerán de la extensión y el tipo de lesión, así como de la atención médica que se reciba. Es importante buscar atención médica adecuada para evaluar y tratar las lesiones de manera oportuna y adecuada. La rehabilitación y el proceso de recuperación también pueden ser necesarios para lograr una recuperación completa y prevenir complicaciones a largo plazo.

El desarrollo de la ciencia y la tecnología, desde la perspectiva de la salud pública y todos sus actores implicados desde las más diversas profesiones, pero con el común objetivo de la vida más plena de sus conciudadanos, enfrenta la creciente incidencia de las denominadas enfermedades o accidentes cerebrovasculares, tercera causa de las defunciones y discapacidad parcial o total de las extremidades motoras (Yañez & Madariaga, 2021)

Al respecto (Díaz Suárez, Moreno Moreno, Sanjuan Vargas, Prada García, & Torres, 2021) mencionan que, la robótica ha incursionado ampliamente en la medicina, en particular, en el área de la fisioterapia asistida, en la que utilizando exoesqueletos o sistemas electromecánicos se estimulan diversos movimientos en las articulaciones, lo cual ha resultado muy importante cuando existe una elevada pérdida muscular, dolor excesivo, afecciones de nervios y adherencias en las articulaciones, y que se ha demostrado que el paciente puede recobrar la movilidad de sus extremidades con mayor facilidad, eficiencia y en un menor tiempo.

Los robots proporcionan nuevas formas de terapia para pacientes con desórdenes neurológicos. Las terapias de marcha asistidas con exoesqueletos pueden incrementar la duración y la intensidad de los entrenamientos para los pacientes y reducir el esfuerzo físico del terapeuta. Sin embargo, el uso de estos dispositivos para el entrenamiento de la marcha limita la interacción física entre el terapeuta y el paciente, en comparación con la terapia manual. Una apropiada realimentación de las funciones corporales y biomecánicas en la interacción con el sistema robótico facilita la evaluación del desempeño del paciente, motivándolo en el reaprendizaje de la marcha con resultados superiores (Villarejo, Valencia Jiménez, Arango Hoyos, & Caicedo Bravo, 2017).

1. MATERIALES Y MÉTODOS

Se aplicó la investigación documental (bibliográfica para realizar la recopilación bibliográfica de aspectos referentes a los usos de los robots exoesqueletos que se aplican en la rehabilitación terapéutica de pacientes con dificultades de movimiento en alguno de sus miembros o cuerpo.

La investigación documental (Cabrera García, 2018)

Métodos

Métodos teóricos

- Método deductivo inductivo: Permitió obtener información teórica sobre los aspectos técnicos de los exoesqueletos.
- Método análisis síntesis: Permitió descomponer y procesar los datos bibliográficos recolectados para proponer la propuesta uso de los robots exoesqueletos para la rehabilitación de pacientes.

Para (Cabrera G., 2018, pág. 110), el método inductivo, es el método que permite extraer, a partir de determinados conocimientos, observaciones o experiencias particulares, el principio general que en ellos está contenido, principio general que permite la concepción y la explicación de otros fenómenos o hechos científicos parecidos o iguales.

Por su parte, "la deducción es un método que permite extraer consecuencias particulares de principios, proposiciones o supuestos generales.". Es decir, este método permite el tránsito del conocimiento científico por el sendero de la concepción general del hecho o fenómeno científico hacia lo particular." (Cabrera G., 2018, pág. 118).

Ambos métodos la deducción y la inducción se constituyen en una unidad mental capaz de explicar de manera dialéctica el problema de investigación.

Estos métodos se utilizaron, en la introducción, así como en el planteamiento del problema, de la misma en el contenido del presente trabajo de investigación.

2. RESULTADOS

Este artículo científico presenta diversos diseños de exoesqueletos que se utilizan para la rehabilitación de pacientes que tienen alguna dificultad en el movimiento de algún miembro o parte de su cuerpo.

Las propuestas presentadas fueron objeto de estudios de personas que se dedicaron al diseño, desarrollo e implementación de robots exoesqueletos para la rehabilitación motora de pacientes.

Dichos diseños permiten coadyuvar al personal de salud en la rehabilitación de pacientes. Los diseños propuestos y algunos desarrollados fueron supervisados en su gran mayoría por personal médico especializado.

Propuesta 1: Desarrollo de un exoesqueleto para la rehabilitación del movimiento flexo-extensor del codo

En este trabajo de investigación se presenta el desarrollo de un dispositivo electromecánico para la rehabilitación del movimiento flexor-extensor del codo con potencial rehabilitatorio. Para la elaboración de este prototipo se diseñó y construyó una articulación del codo el cual permite realizar movimientos de 0° a 120°. El diseño del sistema de engranaje se realizó utilizando el

software Solid Edge a partir de una selección previa del motor de paso que ofreciera el torque suficiente para lograr la flexión y extensión del codo, seguidamente para la construcción de este sistema se utilizó una impresión 3D en PLA. Dicho sistema se acopló a un sistema estabilizador de brazo con bisagra. El prototipo se opera

desde un aplicativo software en Android utilizando el IDE MIT app inventor, que le envía la angulación deseada a un dispositivo arduino el cual implementa un sistema de

Control digital. Para mejorar la percepción de la terapia con el exoesqueleto se elaboró un aplicativo software de telerehabilitación utilizando el IDE processing y el dispositivo de reconocimiento corporal Kinect, el cual

guía al paciente en una terapia interactiva donde realizan la rehabilitación del movimiento de flexión y extensión guiando un objeto virtual de un ángulo a otro (Díaz Suárez, Moreno Moreno, Sanjuan Vargas, Prada García, & Torres, 2021).

Figura 1: Impresión 3D del exoesqueleto **Fuente:** (Andrés Díaz, 2020)

Propuesta 2: Modelado y Simulación de un Robot Terapéutico para la Rehabilitación de Miembros Inferiores

La rehabilitación en un sentido general tiene el objetivo de reincorporar a una persona a sus actividades de la vida cotidiana. Actualmente, un paciente que requiere de alguna rehabilitación sufre de largas esperas para ser atendido debido a la falta de personal en las clínicas y hospitales. Una alternativa para ayudar al personal médico en las terapias de rehabilitación es utilizando robots terapéuticos. Este artículo muestra el modelado y la simulación de un robot terapéutico para la rehabilitación de miembros inferiores. Se presenta el modelo cinemático y dinámico de un robot de tres grados de libertad con un efector final configurado en paralelo. Se presenta una ley de control por par calculado para el seguimiento de trayectorias planificadas. Se presentan simulaciones de ejercicios terapéuticos para cadera y rodilla realizadas en ADAMS y MATLAB para conocer el comportamiento cinemático y dinámico del robot. Los resultados obtenidos demuestran el gran potencial del robot terapéutico para asistir en la rehabilitación de miembros inferiores (Guzmán Valdivia, Blanco Ortega, Oliver Salazar, & Azcaray Rivera, 2013).

Figura 2: Robot Terapéutico para la Rehabilitación de Miembros Inferiores

Fuente: (Revista Ingeniería Biomédica, 2013)

Propuesta 3: Exoesqueleto robótico para la rehabilitación del miembro superior del paciente hemipléjico

El objetivo de este trabajo fue aplicar una metodología que integra criterios de diseño, biomecánicos y clínicos en el desarrollo del exoesqueleto para la rehabilitación del miembro superior en pacientes hemipléjicos. Se presenta el proceso de selección de los actuadores de fuerza, mecanismos de rotación del brazo y de pronosupinación del antebrazo, así como la armadura mecánica en su totalidad. Se complementa el diseño con sencillos sistemas de control, seguridad y una interfaz para el control del exoesqueleto por parte del fisioterapeuta. El prototipo diseñado ha sido construido y validado en pruebas pilotos practicadas en el Hospital Clínico Quirúrgico de Santiago de Cuba, Cuba, en pacientes hemipléjicos aquejados del síndrome del hombro doloroso (Broche Vásquez & Torrez Quezada, 2020).

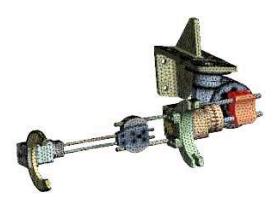


Figura 3: Diseño de la estructura o armazón Fuente: (Andrés Díaz, 2020)

Propuesta 4: Sistema de biofeedback para rehabilitación de marcha asistida por un exoesqueleto

El biofeedback ha sido aplicado en rehabilitación de marcha con pacientes con accidente cerebro-vascular y con lesiones en la médula espinal. Registros de electromiografía y variables cinemáticas han sido procesados para presentar estímulos visuales, acústicos o como combinación de ambas, así como también con métodos vibrotáctiles. La aplicación de biofeedback en rehabilitación de lesiones neurológicas ayuda a mejorar las funciones motoras del paciente durante la marcha. En la terapia manual, el terapeuta estima el nivel de asistencia necesaria para asegurar que el paciente mantenga un patrón de marcha fisiológico. Sin embargo, cuando se reduce el desempeño del movimiento este tipo de asistencia comúnmente se incrementa para obtener una mejora, llevando posiblemente a que el paciente camine con un esfuerzo inferior al de su capacidad máxima. Por tanto, la estimación de la capacidad máxima de locomoción del paciente y su realimentación podrían mejorar la calidad del entrenamiento de la marcha (Villarejo, Valencia Jiménez, Arango Hoyos, & Caicedo Bravo, 2017).

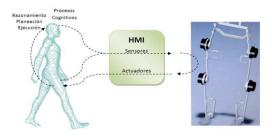



Figura. 4: Interfaz Humano - Máquina Fuente: (researchgate, 2021)

Propuesta 5: Dispositivo Mecatrónico para el análisis y mitigación de movimientos involuntarios en personas con enfermedad de Parkinson

La enfermedad de Parkinson es una patología neurodegenerativa, progresiva e incurable; con el fin de mejorar la calidad de vida de las personas que la padecen, se propuso el diseño y construcción de un dispositivo mecatrónico que permita el análisis de los movimientos involuntarios producto de la enfermedad. Dicho dispositivo permite, mediante el uso señales electromiográficas producidas por los músculos del antebrazo y de un algoritmo basado en redes neuronales artificiales, el análisis de los movimientos involuntarios de pronunciación generados en las extremidades superiores. Para la materialización del dispositivo se tomó en cuenta técnicas de prototipado rápido como lo es la impresión 3D y el modelo en V aplicado a la Mecatrónica. Como resultado de este trabajo de investigación se obtuvo un dispositivo mecatrónico en forma de exoesqueleto controlado por un sistema embebido que analiza y procesa señales y, mediante redes neuronales electromiográficas artificiales, permite la clasificación del temblor y de movimientos voluntarios producidos por cada paciente (Rivera, Bonilla, Moya, Mosquera, & Vitalyevich, 2019).

Figura 5: Diagrama de bloques del dispositivo robótico **Fuente:**(researchgate, 2021)

Figura.6: Dispositivo mecatrónico en forma de exoesqueleto Fuente: (researchgate, 2021)

Revisando la bibliografía revisada en cuanto al uso de robots exoesqueletos para rehabilitación terapéutica, es imprescindible el desarrollo de exoesqueletos que permitan facilitar la rehabilitación de cada una de las partes del cuerpo humano. En la presente investigación, solo se tocó algunos miembros del cuerpo humano, por lo tanto, se debe propiciar la investigación para el desarrollo de robots exoesqueletos para la integridad del cuerpo humano, ya que el mismo puede ser objeto de diversas lesiones.

En la era en que nos encontramos, donde se observa la acelerada evolución tecnológica en cuanto a hardware y software, se hace imperiosa la necesidad de aplicar dichos avances en el desarrollo de robots exoesqueletos que permitan a pacientes en rehabilitación física.

Como aporte personal, se propone que se debe diseñar, desarrollar e implementar exoesqueletos con Inteligencia Artificial, los cuales permitan una mejor eficiencia y eficacia del uso de exoesqueletos. Para lo cual se propone que se deben diseñar algoritmos de inteligencia artificial que analicen los movimientos de las partes afectadas del cuerpo humano, para que puedan permitir que los exoesqueletos funcionen de manera eficiente. Por lo tanto, los algoritmos deben permitir optimizar el tratamiento de los pacientes para su recuperación.

4. CONCLUSIONES

Los trabajos de investigación mostrados en el presente artículo, y los que se están desarrollando en el desarrollo de exoesqueletos, demuestran que la asistencia con control robótico sumado a la terapia que realizan los especialistas médicos en rehabilitación, permite coadyuvar de gran manera en la rehabilitación de los pacientes.

Los robots exoesqueletos, diseñados, desarrollados e implementados en diferentes partes del cuerpo para su rehabilitación, permiten en forma efectiva acelerar el proceso de rehabilitación.

Es importante propiciar el desarrollo de dispositivos robóticos para la rehabilitación física para los pacientes con dificultad motora.

REFERENCIAS

Broche Vásquez, L., & Torrez Quezada, M. (22 de abril de 2020). Exoesqueleto robótico para la rehabilitación del miembro superior del. *Ingeniería Mecánica Universidad Tecnológica de la Habana José Antonio Echeverría, 1*(3), 15-26. Recuperado el 15 de junio de 2023, de http://scielo.sld.cu/pdf/im/v23n3/1815-5944-im-23-03-e60 8.pdf

Cabrera García, G. C. (2018). *Elementos Básicos del Estudio y de la Investigación* (Segunda Edición ed.). Llallagua, Potosí, Bolivia: Latinas Editores. Recuperado el 15 de junio de 2023

Cornejo, J., & Cornejo Aguilar, J. (19 de octubre de 2019). INNOVACIONES INTERNACIONALES EN ROBÓTICA MÉDICA. Revista de la Facultad de Medicina Humana, 105 - 113. doi:10.25176/RFMH.v19i4.2349

Díaz Suárez, R. A., Moreno Moreno, L. T., Sanjuan Vargas, M. A., Prada García, C. A., & Torres, L. D. (enero de 2021). Desarrollo de un exoesqueleto para. *Revista ITECKNE - Universidad Santo Tomás, Seccional de Bucaramanga.* 18(1). Obtenido de

http://www.scielo.org.co/pdf/itec/v18n1/1692-1798-itec-18-01-46.pdf

Guzmán Valdivia, C. H., Blanco Ortega, A., Oliver Salazar, M. A., & Azcaray Rivera, H. R. (julio - diciembre de 2013). Modelado y Simulación de un Robot Terapéutico. *Revista Ingeniería Biomédica*, 7(14), 42-50. Obtenido de http://www.scielo.org.co/pdf/rinbi/v7n14/v7n14a05.pdf

Kapandi, A. I. (2000). Fisiología Articular del Miembro Inferior. *Revista Média Panamericana*.

Hilasaka Sánchez, L. K., Salazar Rojas, A. F., Quispe Galdós, S., Paz Zúñiga, D., & López Casihue, J. (2016). *Agencia Peruana de Noticias*. Recuperado el 25 de Junio de 2022, de https://andina.pe/agencia/noticia-crean-casco-inteligente-pe rmitira-reducir-mas-del-30-accidentes-laborales-612783.as px

Ogata, K. (2010). *Ingeniería de control moderna* (Quinta ed.). España: Pearson. Recuperado el 15 de junio de 2023

Rivera, G., Bonilla, V., Moya, M., Mosquera, G., & Vitalyevich, L. A. (2 de marzo de 2019). Dispositivo Mecatrónico para el análisis y mitigación. *Enfoque UTE, 10*(1), 153-172. doi:http://scielo.senescyt.gob.ec/pdf/enfoqueute/v10n1/139 0-6542-enfoqueute-10-01-00153.pdf

Rodríguez, S., & Torres, M. (2020). Robotic therapy for the hemiplegic shoulder pain: a pilot study. *Journal of NeuroEngineering and Rehabilitation*. doi:7:54-64

Vallardes Fuente, F. E. (22 de junio de 2022). Programa de ejercicios para las transferencias y la marcha en los. *Revista de Ciencia y Tecnología en la Cultura Física, 17*(3), 60 - 73. doi:http://scielo.sld.cu/pdf/rpp/v17n3/1996-2452-rpp-17-03 -876.pdf

Villarejo, J. J., Valencia Jiménez, N. J., Arango Hoyos, G. P., & Caicedo Bravo, E. F. (18 de enero de 2017). Sistema de biofeedback para rehabilitación de marcha asistida por un exoesqueleto. *Revista Ingeniería Biomédica, 12*(24), 47-57. Recuperado el 15 de junio de 2023, de http://www.scielo.org.co/pdf/rinbi/v7n14/v7n14a05.p

SIMULANDO REDES MÓVILES DE FORMA GENÉRICA DE LAS EMPRESAS DE TELECOMUNICACIONES

Freddy Rocabado Ibáñez, M.Sc.

rocosfree@gmail.com

Ingeniería Informática

Universidad Nacional "Siglo XX"

Llallagua – Bolivia

Resumen - El uso de redes móviles es algo muy habitual hoy en día, hace algunas décadas apenas sabíamos de su existencia ya que esta situación fue cambiando y mejorando con las diferentes generaciones que se vio. Con el 4G y 5G a la cabeza, las ventajas que ofrecen actualmente las comunicaciones inalámbricas han creado una sociedad cada vez más digitalizada, donde las empresas de telecomunicaciones pueden ofrecer servicios más innovadores que aumentan la eficiencia de sus actividades. Las redes móviles son una tecnología realmente fantástica que nos permite tener acceso a Internet en casi cualquier lugar, incluso en zonas remotas. En lugar de tener un cable conectado a tu dispositivo, puedes hacerlo todo de forma inalámbrica mediante ondas de radio o radiofrecuencia, esto ha cambiado definitivamente nuestras vidas.

Las redes móviles proporcionan comunicaciones con ubicuidad, versatilidad y flexibilidad. La comunicación del terminal móvil se realiza a través de una interfaz aire o interfaz radio, a través de la cual enlaza directamente con una estación base, estación fija que a su vez está conectada con la red fija. La cobertura de las estaciones base se ve en ocasiones suplementada mediante estaciones repetidoras, que permiten extender la cobertura superficial en determinadas direcciones o cubrir zonas de sombra, incluyendo túneles o interiores de edificios.

Aunque el funcionamiento de las redes móviles es complejo, se puede resumir de forma sencilla. Todo parte de una central telefónica digital que posee el equipamiento necesario para comunicarse con los dispositivos móviles. La central es el centro de operaciones donde se procesan los datos, se transmiten y reciben las señales provenientes de cualquier antena. Los paquetes de datos viajan hasta la central, son procesados y distribuidos a sus destinatarios. No pensamos en la tecnología que hay detrás, simplemente activamos nuestros datos móviles y navegamos. Para entender la belleza de las redes móviles, tenemos que profundizar en ellas para ver cómo se van conectando los dispositivos móviles y cómo funcionan.

Palabras clave: Comunicaciones inalámbricas, Dispositivos, Redes Móviles, Estación base, Tecnología, 4G, 5G.

Abstract - The use of mobile networks is very common today, a few decades ago we barely knew of their existence since this situation changed and improved with the different generations that were seen. With 4G and 5G at the forefront, the advantages currently offered by wireless communications have created an increasingly digitalized society, where telecommunications companies can offer more innovative services that increase the efficiency of their activities. Mobile networks are a truly fantastic technology that allows us to have access to the Internet almost anywhere, even in remote areas. Instead of having a cable connected to your device, you can do everything wirelessly using radio waves or radio frequency, this has definitely changed our lives.

Mobile networks provide communications with ubiquity, versatility and flexibility. Communication of the mobile terminal is carried out through an air interface or radio interface, through which it links directly to a base station, a fixed station that in turn is connected to the fixed network. The coverage of the base stations is sometimes supplemented by repeater stations, which allow the surface coverage to be extended in certain directions or to cover shadow areas, including tunnels or building interiors.

Although the operation of mobile networks is complex, it can be summarized simply. Everything starts from a digital telephone exchange that has the necessary equipment to communicate with mobile devices. The central office is the operations center where data is processed, signals from any antenna are transmitted and received. The data packets travel to the central office, are processed and distributed to their recipients. We don't think about the technology behind it, we simply activate our mobile data and browse. To understand the beauty of mobile networks, we have to delve deeper into them to see how mobile devices connect and how they work.

Keywords - Base station, Device, Mobile networks, Technology, Wireless communications, 4G,5G.

1. INTRODUCCIÓN

4G y 5G son las siglas de lo que se quiere convertir en la cuarta y quinta generación de tecnologías de telefonía móvil. Está basada totalmente en IP, siendo un sistema de sistemas y una red de redes, no es una tecnología o estándar definido, sino una colección de tecnologías y protocolos para permitir el máximo rendimiento de procesamiento, alcanzándose después de la convergencia entre las redes de cables e inalámbricas así como en ordenadores, dispositivos eléctricos y en tecnologías de la información así como con otras convergencias para brindar velocidades de acceso entre 100 Mbps en movimiento y 1 Gbps en reposo, manteniendo un servicio de punto a punto con alta seguridad y permitiendo ofrecer servicios de cualquier clase en cualquier momento, con un mínimo coste. Esta convergencia de tecnologías surge de la necesidad de agrupar los diferentes estándares en uso con el fin de delimitar el ámbito de funcionamiento de cada uno de ellos y con el fin también de integrar todas las posibilidades de comunicación en un único dispositivo de forma transparente al usuario. La 4G no es una tecnología o estándar definido, sino una colección de tecnologías y protocolos diseñados para permitir el máximo rendimiento de procesamiento con la red inalámbrica más barata.

Las redes móviles se prestan mediante la utilización de ondas radioeléctricas, por lo que son un subconjunto de las radiocomunicaciones. Εl Reglamento Radiocomunicaciones de la UIT (Unión Internacional de Telecomunicaciones) define el servicio móvil como un servicio de radiocomunicaciones entre estaciones móviles y estaciones fijas, o entre estaciones móviles únicamente. Los sistemas móviles se clasifican, en función del entorno por el que se desplacen los terminales móviles, como pertenecientes al servicio móvil terrestre, marítimo y aeronáutico. Cada uno de estos servicios puede prestarse mediante medios terrenales exclusivamente o utilizando satélites para establecer la comunicación con los terminales móviles. En este último caso se habla de servicio móvil terrestre, marítimo o aeronáutico por satélite.

En relación con otros sistemas de radiocomunicaciones, los sistemas de comunicaciones móviles aportan movilidad completa, es decir, permiten la comunicación con cualquier terminal que esté en cualquier punto de la zona en la que ofrecen el servicio, y pueden mantener la comunicación mientras el terminal se desplaza, siempre que no se supere la velocidad máxima de diseño. Otros sistemas, como los denominados inalámbricos (wireless), ofrecen generalmente movilidad reducida, ya sea porque la velocidad máxima es muy baja (de peatón) o porque no garantizan la continuidad de la comunicación durante los desplazamientos. No obstante, la evolución de los sistemas inalámbricos, que se presentarán en el capítulo 11, los ha llevado a incorporar prestaciones parecidas a las de los sistemas móviles en algunos casos.

Los sistemas de redes móviles permiten el intercambio de información variada (voz, vídeo o datos de muy diversa

naturaleza), entre terminales a bordo de vehículos o transportados por personas y terminales fijos (centros de control, teléfonos u otros dispositivos conectados a la red fija). Entonces para poder estar seguros de que va a funcionar todo lo que anteriormente se ha mencionado sobre las redes móviles existen programas o software para poder realizar simulaciones y verificar su correcto funcionamiento.

2. DESARROLLO

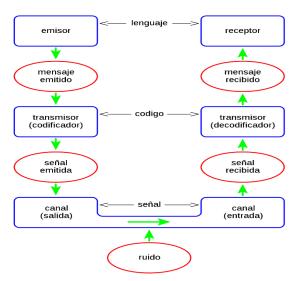
- Teoría de la Información y Comunicación

La teoría de la información y comunicación, también conocida como teoría matemática de la comunicación, es un planteamiento que estudia el procesamiento y medición de datos en la transmisión de una información. El proceso de comunicación planteado por sus creadores establece el flujo de un mensaje entre un emisor y un receptor a través de un canal determinado.

La teoría de la información también se encarga de medir y representar la información, así como la capacidad de procesamiento de los sistemas de comunicación para transmitir dicha información. Es, además, una rama de la teoría de la probabilidad matemática.

¿Cómo surge la teoría de la información y comunicación?

La teoría matemática de la información fue propuesta en 1949 por el matemático e ingeniero Claude Shannon y el biólogo Warren Weaver. No obstante, es el resultado de investigaciones iniciadas casi treinta años antes por científicos como Andrei Markovi y Ralph Hartley, este último conocido por ser uno de los primeros representantes del lenguaje binario.


El aporte de Alan Turing, quien llevó a cabo un esquema de una máquina capaz de procesar los datos de la información a través de emisiones de símbolos, fue el último precedente para el desarrollo, culminación y consagración de la que se llamó Teoría Matemática de la Comunicación.

Todos los estudios de la época tenían en común el mismo objetivo: buscar formas eficientes de utilizar canales de comunicación para enviar una información por medio de un canal sin que se viera afectada la calidad del mensaje que llegaba.

-¿Cuáles son los elementos de la teoría de la información y comunicación?

- 1. Fuente de información o emisor: elemento capaz de emitir un mensaje. En la teoría de la información, las fuentes principales son:
- -Aleatorias: cuando el mensaje no se puede predecir.
- -Estructuradas: cuando hay cierto nivel de redundancia y orden.

- **No estructuradas:** en la que todos los mensajes son aleatorios, sin relación ni sentido, por lo que hay una pérdida de parte del mensaje.
- **2. Mensaje:** se trata de un conjunto de datos que son transportados a través de un canal.
- **3.** Código: conjunto de elementos que siguen una serie de normas para su combinación, de manera que puedan ser interpretados.
- **4.** Canal: medio por el que se transmite el mensaje para que llegue al receptor.
- **5. Información:** es lo que se busca transmitir a través de un mensaje. Desde el punto de vista de la probabilidad matemática, marco teórico de la teoría de la información, la información debe ser proporcional al número de bits que se necesita para reconocer el mensaje.
- **6. Receptor o destinatario:** quien recibe el mensaje. Es indispensable que sea capaz de asimilar el contenido del mensaje que se origina desde la fuente o emisor.
- **7. Ruido:** diferentes causas que impiden que el mensaje llegue con normalidad en el proceso de flujo de la información, de manera que el receptor no podrá entenderlo completamente.

Figura 1. Elementos de la teoría de la información y comunicación **Fuente:** (uninter, 2007)

- Dispositivos Móviles

Un dispositivo móvil es todo aparato de dimensiones relativamente pequeñas (pueden ser, en ocasiones, medianas) especialmente acondicionado para vincularse con otros equipos mediante bluetooth o conectividad Wi-Fi, por ejemplo.

Son productos portátiles y livianos que pueden trasladarse fácilmente, aprovecharse para realizar actividades

relacionadas a Internet y emplearse como herramientas tecnológicas capaces de satisfacer deseos o necesidades tanto personales como profesionales.

Existe, hoy en día. una amplia variedad de dispositivos móviles, algunos más populares y accesibles que otros. En este marco, es posible distinguir entre smartphones (definidos en castellano como teléfonos inteligentes), tabletas (piezas livianas con pantalla táctil ideales para guardar información tanto en memorias externas como en una memoria interna, intercambiar contenidos con otros equipos, navegar por la Web, jugar, etc) y los llamados wearables (entre ellos, los relojes inteligentes de pulsera bautizados en inglés como smartwatches).

Las computadoras (u ordenadores) portátiles, los reproductores digitales, los aparatos modernos de radionavegación por satélite conocidos bajo la denominación de Sistema de Posicionamiento Global (GPS) son otros de los inventos que diversifican al conjunto de los dispositivos móviles.

Figura 2. Dispositivos Móviles **Fuente:** (Dispositivos móviles, 2018)

2.2.1. Usos y funcionalidad de un Dispositivo Móvil

Los usos y las funcionalidades de un dispositivo móvil varían en función de las características de cada equipo y de cómo desea aprovecharlo el usuario.

Así como una gran cantidad de personas encuentra a estos recursos como aliados de la comunicación a distancia (utilizándolos para mensajería instantánea, publicar contenidos en redes sociales, enviar y/o recibir correos electrónico), como fuentes de entretenimiento (abundan los juegos móviles gratuitos, las apps de e-readers móviles, los podcasts, los servicios de streaming de música y video) y como herramientas de productividad (para hacer operaciones apelando a la banca móvil, cumplir obligaciones laborales de forma remota aprovechando los beneficios de las apps de colaboración y trabajo en equipo, las videollamadas, etc) y como vía de conocimiento (con ciertos dispositivos móviles se accede a apps educativas, a servicios de traducción y a cursos online, por ejemplo).

Los asistentes virtuales (Siri, Google Assistant) y la tecnología de realidad aumentada son otros desarrollos

modernos que están a disposición de quienes usan determinados dispositivos móviles.

Figura 3. Funcionalidades de un Dispositivo Móvil Fuente: (innovationtechnologiquestp, 2004)

2.2.2. Evolución de las Redes Móviles

Todos sabemos que es una revolución, pero nadie podía imaginar que conduciría a redes modernas y 5G. Y es que nuestras vidas se rigen de alguna manera por las redes de telefonía e Internet móvil las cuáles han cambiado a lo largo de los años, hasta la red 5G de hoy, que por otro lado es bastante discutida y controvertida.

Pero lo cierto es que las redes móviles o de telefonía se rigen por La Unión Internacional de Telecomunicaciones (UIT) que creó un comité para definir las especificaciones. Se trata del comité IMT-Advanced que, entre otras cosas, define los requisitos que son necesarios para que un estándar se considere de la generación vigente.

Lo que esto significa es que cuando cambiamos de generación, se produce un cambio importante en todos los aspectos y este comité es el encargado de decidir las características mínimas que tienen que tener los dispositivos y redes cuando quieren formar parte de una u otra generación.

Red móvil 1G

La llamada red 1G se refiere a la primera generación de tecnología celular inalámbrica. Inaugurada en 1979 por Nippon Telegraph and Telephone (NTT) en el área metropolitana de Tokio, todavía era un estándar en gran parte analógica, lo que provocó la primera revolución tecnológica real: estos son los años de TACS (Total Access Communication System, en castellano Sistema de Comunicación con Full Access) y la idea de un teléfono inalámbrico. Sin embargo, tiene una limitación importante: en cada banda de frecuencia, solo un usuario puede comunicarse a la vez, debido a la tecnología utilizada.

Red móvil 2G

La segunda generación 2G de redes móviles es también la primera red digital. Nació con el estándar GSM. Era 1991: tenía más ancho de banda, por lo tanto, más velocidad, y nuevos servicios disponibles como SMS y conexión a la red

vía WAP. Se produce el primer cambio sociocultural real: los mensajes SMS hacen su debut con las redes 2G. Mensajes cortos de 160 caracteres, que literalmente cambiaron la forma en que nos relacionamos con los demás.

Red móvil 3G

La tercera generación de redes de Internet móvil llegó a principios de 2000 en Corea del Sur y Japón, mientras que en España hizo su debut en 2005. En la base de esta generación el estándar UMTS (Universal Mobile Telecommunications System), que en a su vez, se basa en una evolución del CDMA utilizado a partir de la red 2G. Las utilizadas comienzan multiplicarse frecuencias a ocupando bandas de frecuencia aún más altas: 850, 900, 1800 y 2100 MHz. La velocidad de descarga pasa de 384 Kbps a 21 Mbps, llevando Internet a los teléfonos móviles: 3G, de hecho, es el estándar del primer smartphone.

La red móvil 3G LTE

Después de la red 3G y antes del 4G llega el momento, en 2008, de la red 3G LTE, es decir, Long Term Evolution, término utilizado para indicar la evolución de un estándar de comunicación para mejorar su rendimiento. Lo importante de 3G LTE es la introducción de la tecnología MIMO, Multiple Input, Multiple Output en las redes móviles. Gracias al uso de varias antenas, un terminal MIMO puede intercambiar más datos al mismo tiempo, tanto que la velocidad máxima teórica de descarga asciende a 326,4 Mbit/s y la velocidad de subida a 86,4 Mbit /s. Con 3G LTE, los usuarios comenzaron a probar la conexión móvil rápida, que luego se convirtió en el caballo de batalla de las redes 4G.

Red móvil 4G

Nuestra vida comienza a cambiar radicalmente: Blackberry lleva los correos electrónicos a los teléfonos móviles, Apple lanza la App Store en 2008, llegan las videollamadas y vamos más allá de los SMS gracias a Whatsapp. La historia de 4G o LTE, la cuarta generación de redes de Internet Móvil, comienza el 27 de junio de 2011, cuando se publica el anuncio de cesión de licencias. Las velocidades de descarga aumentan enormemente (hasta 326,4 Mbps), creando las condiciones para la explosión de las comunicaciones y posibilidades móviles actuales: transmisión de video HD y 4K, transmisión de música de alta calidad e Internet de las cosas (IoT), con dispositivos que siempre están disponibles. conectados y controlables en cualquier lugar. Los pagos online, gracias a la estabilidad de 4G, se extendieron considerablemente, lo que también llevó al nacimiento de criptomonedas como Bitcoin.

Dentro de unos años, sin embargo, surge el verdadero límite de la red 4G, que no es la velocidad, sino la latencia, que es el tiempo que transcurre entre la solicitud de un dato y su llegada real al teléfono inteligente del usuario.

Red móvil 5G

Y ahora llega el turno de la red de Internet móvil 5G. El término 5G (siglas de 5th Generation) indica el conjunto de tecnologías de telefonía móvil y celular, cuyos estándares definen la quinta generación de telefonía móvil con una evolución significativa en comparación con la tecnología 4G / IMT-Advanced. Gracias a su innovadora tecnología, permite conectar una gran cantidad de dispositivos al mismo tiempo, garantizando una altísima fiabilidad, asegurando una mayor velocidad de conexión, menor latencia y mejor rendimiento que los 4 LTE actuales. Las frecuencias de transmisión de señales previstas para la tecnología 5G son: 700 MHz (la que utilizan actualmente los televisores), 3600-3800 MHz y 26 GHz (explotación de ondas electromagnéticas que utilizan frecuencias superiores a las que se utilizan en la actualidad).

Esto permite tener una transmisión de datos mucho más rápida, siempre que haya distancias reducidas entre el receptor y el emisor por lo que se produce una transmisión de datos más sensible a los obstáculos.

Red NGN

Estas redes de nueva generación también contemplan a las NGN por sus siglas en inglés (Next Generation Network) o red NGN. Son redes basadas en paquetes que se enfocan en proveer un servicio para las telecomunicaciones y el intercambio de datos en grandes cantidades. Al comparar con las redes tradicionales, las redes de generación próxima ofrecen una garantía mayor cuando se trata de la QoS (calidad de servicio) y además tienen la capacidad de soportar múltiples servicios (como voz, video o audio) de manera simultánea.

De hecho, esta es una de las razones por las que también se considera a las NGN como redes de telecomunicación de alta calidad. El conjunto de nuevas redes se contempla desde el análisis con proyección hacia el futuro, como las redes futuras que contemplan a las redes SDN, redes móviles, el IoT y otras nuevas redes.

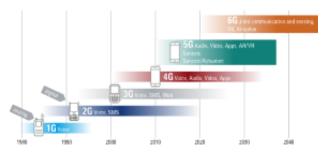


Figura 4. Evolución de las Redes Móviles Fuente: (rohde, 2024)

2.2.3. Medios de Transmisión

El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de transmisión, las transmisiones se realizan habitualmente empleando ondas electromagnéticas que se propagan a través del canal. A veces el canal es un medio físico y otras veces no, ya que las electromagnéticas son susceptibles de ser transmitidas por el vacío.

Dependiendo de la forma de conducir la señal a través del medio, los medios de transmisión se Pueden clasificar en dos grandes grupos:

Medios de transmisión guiados

- El par trenzado
- El cable coaxial
- La fibra óptica

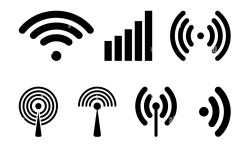
Medios de transmisión no guiados

- Radiofrecuencia
- Microondas
- Luz (infrarrojos/láser)
- Satelital

Radiofrecuencia

Es el espacio vacío que se utiliza para la comunicación como medio. Además de usar las frecuencias normales de estaciones de AM y FM, utiliza onda corta o radiofrecuencias distancias cortas. Las principales aplicaciones de este medio son en telefonía celular y en redes locales sin cableado.

- Es susceptible de sufrir interferencias cuando se utilizan otros medios que involucren frecuencias.
- Las señales de radio son omnidireccionales (no necesaria alineación)
- Un emisor y uno o varios receptores

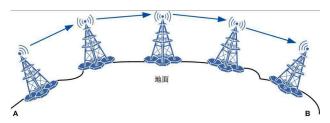

Bandas de frecuencia:

- LF, 3 a 30kHz -Ondas Miriamétricas
- MF, 300 a 3000kHz -Ondas Hectométricas
- HF, 3 a 30MHz -Ondas Decamétricas
- VHF, 30 a 300MHz -Ondas Métricas

Propiedades:

- Fáciles de generar
- Pueden viajar largas distancias
- Atraviesan paredes de edificios sin problemas

- Sujetas a interferencia por motores y otros equipos eléctricos. Sus propiedades dependen de la frecuencia
- A bajas frecuencias cruzan bien los obstáculos, pero la potencia baja drásticamente con la distancia
- A altas frecuencias tienden a viajar en línea recta y rebotar en obstáculos
- Dependiendo de la frecuencia tienen 5 formas de propagarse: superficial, Troposférica (por dispersión), ionosférica (región alta de la atmosfera), línea de visión y espacial


Figura 5. Señales de Radiofrecuencia **Fuente:** (png wing, 2022)

Microondas

Se utiliza para comunicar datos a larga distancia, proporciona velocidad y costos bajos. La comunicación mediante microondas es fácil de establecer, pero su uso presenta algunas desventajas debido a las condiciones del ambiente.

Características

- Frecuencias muy altas: 1 -100 GHz
- Longitud de onda muy pequeña
- No atraviesa bien edificios
- Ondas más direccionales que las de radio
- Se utilizan antenas parabólicas
- Tx y Rx se tienen que "ver"
- Cuanto más altas son las antenas, más distancia puede cubrir
- No necesita derecho de paso

Figura 6. Señal Microondas **Fuente:** (optico fiber, 2023)

Infrarrojo

La luz infrarroja es un tipo de luz que oscila a una frecuencia distinta a lo que la hace la luz normal, por lo que el ojo humano no es capaz de verla o percibir.

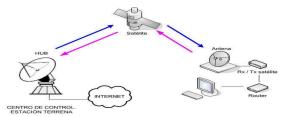
Este medio utiliza radiación electromagnética de longitud de onda que está entre las de radio y las de luz.

Sus aplicaciones principales son redes locales sin cableado entre edificios. Transmisores y receptores que modulan luz infrarroja no coherente (no tiene una frecuencia única de luz sino que posee cierto ancho en el espectro)

Características

- Transmisor y receptor deben estar alineados
- No pueden atravesar paredes
- No necesita permisos o licencias de uso
- Es de corto alcance

Figura 7. Señal Infrarrojo Fuente: (wikihow, 2020)


Satelital

Es parecido a los microondas con la diferencia de que los satélites, además de utilizar estaciones terrestres, también cuentan con estaciones de órbitas. Las comunicaciones vía satélite permiten expandir las redes de comunicación de datos en forma sencilla. El uso de satélites puede presentar problemas de seguridad si la comunicación es interceptada.

Características

- Tipo particular de transmisiones microondas en la que las estaciones son satélites que están orbitando la Tierra.
- Amplia cobertura
- · Rango en GHz.
- Para la comunicación se usan dos bandas de frecuencia
- Canal ascendente: desde Tierra a satélite
- Canal descendente: desde satélite a Tierra

- Los satélites utilizan transpondedores (amplifica la señal que recibe de la estación terrena)
- Un transpondedor recibe una señal microondas desde la Tierra, la amplifica y la retransmite de regreso a una frecuencia diferente

Figura 8. Señal Satelital **Fuente:** (megas por un tubo, 2014)

2.3. Simulador de Redes Móviles

Para los que no conocen, un simulador de red es una aplicación o software que permite al usuario administrador de una red, diseñar un sistema de redes entre computadoras, switches, router, impresoras, servidores, etc.

Si vas a montar una red doméstica o para una empresa, es importante realizar pruebas y conocer diferentes aspectos antes de proceder al montaje. Esto permitirá optimizar los recursos y no tener complicaciones en un futuro. Para ello podemos utilizar simuladores de redes. De esta forma, desde nuestro equipo podremos montar nuestras propias redes virtuales y realizar diferentes pruebas para posteriormente configurar el entorno en real.

2.3.1. ¿Por qué Diseñar una Red Móvil?

Se podría decir que, en algunos casos, diseñar previamente una red es un proceso crítico dentro del organigrama de una empresa. Esto es porque con estos mapas, podremos establecer una base más sólida para garantizar que la red móvil funcione de la forma adecuada. Un funcionamiento eficiente y confiable, es necesario en todas las redes. Por lo cual, algunos de las claves más importantes por las qué diseñar una red móvil son:

Planificación Eficiente: Tener un diseño previo nos permite planificar los recursos y la infraestructura que sean necesarios. Con esto podremos entender los requisitos que vamos a tener en el presente y en el futuro, así como identificar las necesidades de ancho de banda necesario, el almacenamiento o la seguridad. Por lo cual estamos ante un sistema que nos ayudará a evitar problemas como pueden ser algunas limitaciones.

Optimización de Recursos: Crear el diseño de una red móvil basado en el material disponible, nos ayuda a gestionar los recursos de una forma más eficiente y óptima. En este apartado, podemos incluir la asignación de direcciones IP, segmentación de la red, capacidades de almacenamiento, o la distribución equitativa del ancho de banda. Todo esto en

conjunto, hará que la red mejore de forma generalizada en cuanto a rendimiento, y ayuda a minimizar el riesgo de problemas como los cuellos de botella.

Seguridad: Es uno de los puntos críticos de cualquier empresa, y donde se invierte mucho dinero para mantener altos estándares. Con un diseño de red móvil previo, podemos establecer políticas de seguridad más personalizadas y eficientes, configurar dispositivos firewall, instalar sistemas de detección de intrusos, o incluso implementar prácticas de controles de acceso.

Adaptabilidad: Todas las redes deben ser adaptables y hasta cierto punto, escalables. Por lo general es complicado predecir cómo va a crecer una red móvil, o lo que vamos a necesitar en el futuro. Pero con un buen diseño previo, podemos estar preparados para lo que sea. Esto ayudará a que sea escalable, y que se pueda adaptar a las necesidades que se puedan tener en un momento concreto.

Los simuladores de redes suelen ser gratuitos, pero hay otros que son de pago ya que hay que pagar las licencias de los routers que incorporas en el simulador, aunque es posible que haya por Internet algunas imágenes del sistema operativo gratuitas, y las puedas usar, tal y como ocurre con el software GNS3, donde tenemos la posibilidad de cargar imágenes de los sistemas operativos de routers, switches, firewalls y muchos otros equipos de red, pero normalmente estas imágenes tienen un costo.

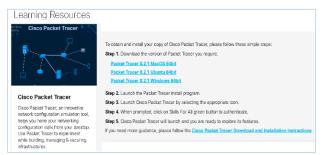
Cisco Packet Tracer

Es uno de los más usados y completos que podemos encontrar. Ha sido desarrollado por Cisco. De hecho, es la aplicación que recomiendan cuando tengamos que hacer pruebas con algunos de sus productos, como routers, switches de red, hubs, servidores etc. No se trata de una herramienta compleja, ya que resulta sencilla de utilizar. Además, es gratuita y permite realizar todo tipo de virtualización de redes.

Este programa está orientado principalmente a usuarios que quieren obtener las diferentes certificaciones de Cisco CCNA, ya que nos permitirá estudiar y aprender cómo funciona el switching y routing en Cisco iOS, el sistema operativo de Cisco que tenemos en sus routers. Cuando queremos aprender con simuladores o emuladores para certificaciones CCNP o superior, este simulador se nos quedará bastante corto, ya que no dispone de todas las opciones de configuración más avanzadas que otros simuladores sí incorporan.

Hasta la versión de Cisco Packet Tracer 6.X, no era necesario registrarse en la web oficial de Cisco, simplemente nos descargamos el simulador y podíamos empezar a realizar los diferentes escenarios de pruebas. A partir de la versión Cisco Packet Tracer 7.0, Cisco necesita que te registres en la página web de forma completamente gratis, y que inicies sesión en el programa, de lo contrario tendrás muchas funcionalidades limitadas. Nuestra recomendación es que descarguéis siempre

la última versión disponible, pero tendrás que registrarse en Cisco para posteriormente iniciar sesión en el programa.


Para descargarlo debes ingresar a la página de Cisco Networking Academy (NetAcad) e iniciar sesión con tu cuenta NetAcad.

https://www.netacad.com/es

Al ingresar selecciona la sección "Recursos" y selecciona la opción "Descargar Packet Tracer"

Si no tienes una cuenta en NetAcad, puedes crear una cuenta en la plataforma "SkillsForAll" donde puedes llevar cualquier curso de manera gratuita. Para descargar el software "Cisco Packet Tracer" debes inscribirte en el curso "Getting Started with Cisco Packet Tracer" si lo llevas en inglés o "Introducción a Cisco Packet Tracer" si lo llevas en español. Aquí te pongo el enlace del curso en español:

https://skillsforall.com/course/getting-started-cisco-packet-tracer?userLang=es-XL

Figura 9. Opciones de descarga gratuita **Fuente:** (learning network, 2023)

Los requisitos del sistema para instalar el Cisco Packet Tracer son los siguientes:

Cisco Packet Tracer 8.2 (64 bits):

Microsoft Windows 8.1, 10, 11 (64 bits), Ubuntu 20.04 LTS (64 bits) o macOS 10.14 o posterior.

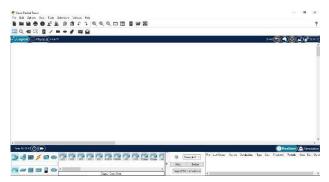
procesador amd64(x86-64).

4 GB de RAM.

1,4 GB de espacio libre en disco.

Cisco Packet Tracer 8.2 (32 bits):

Microsoft Windows 8.1, 10, 11 (32 bits).


CPU compatible x86.

2 GB de RAM.

1,4 GB de espacio libre en disco.

Una vez instalado, cuando inicies por primera vez el software Cisco Packet Tracer se te pedirá realizar la autenticación con tu cuenta "NetAcad" o "SkillsForAll", puedes evitar este detalle, para la siguiente vez que abras el software, si seleccionas una validez de autenticación por 3 meses (tres meses). OJO esto se aconseja hacerlo en caso de que lo instale en su PC personal.

Aquí tenemos la ventana de trabajo.

Figura 11. Interfaz de trabajo Packet Tracer **Fuente:** (learning network, 2023)

Ahora, este software de simulación de redes, redes móviles y IoT nos brinda los siguientes modelos de equipos (solo mencionaré lo más resaltante):

Enrutadores:

- -4331 y 4321 con IOS-XE versión 16, son los modelos vigentes a la fecha, con disponibilidad para interfaces GigabitEthernet de cobre y fibra de capa 3 e interfaces GigabitEthernet de capa 2
- 2911 y 2901 con IOS versión 15, son modelos no muy recientes, pero tienen disponibilidad para interfaces GigabitEthernet de cobre y fibra de capa 3, interfaces FastEthernet de capa 2 e interfaces seriales.
- 2811, con IOS versión 15, que es un modelo antiguo, pero con disponibilidad para interfaces FastEthernet de cobre de capa 3, interfaces GigabitEthernet de fibra de capa 3, interfaces FastEthernet de capa 2 e interfaces seriales. Es el único modelo donde puedes configurar el CME (Call Manager Express) para laboratorios básicos de telefonía IP.

Interruptores:

- 2950T, con IOS versión 12, Switch de capa 2 con 24 puertos FastEthernet e interfaces uplink GigabitEthernet de cobre.
 Es un modelo antiguo y pueden utilizarlo para iniciar el aprendizaje.
- 2960, con IOS versión 15, Switch de capa 2 con 24 puertos FastEthernet e interfaces uplink GigabitEthernet de cobre.
 También es un modelo antiguo, pero lo recomiendo para la práctica de laboratorios para CCNA.
- 3560, con IOS versión 12, Switch de capa 3 con 24 puertos FastEthernet PoE e interfaces uplink GigabitEthernet de cobre. También es un modelo antiguo, pero se recomienda para la práctica de características en capa 3. Una curiosidad

es que soporta la función NAT, una característica no soportada en el equipo real.

- 3650, con IOS-XE versión 16, Switch de capa 3 con 24 puertos GigabitEthernet PoE e interfaces uplink GigabitEthernet de cobre o fibra. Un detalle es que al momento de ponerlo en el escritorio de trabajo e ingresar a su ventana de opciones correspondiente debes agregarle el módulo de fuente de alimentación (AC Power Supply), esto lo debes hacer dentro de la sección "Physical". Este es un modelo vigente hasta el momento.

Equipos Inalámbricos:

- Controlador LAN Inalámbrico (WLC) 2504 y 3504, tiene interfaces GigabitEthernet, solo puede ser accedido mediante Interfaz Gráfica de Usuario (GUI), aunque tiene opciones básicas, como la configuración de Vlan y WPA2, es muy útil para administrar el AP modelo 3702i y los clientes inalámbricos (aunque solo veremos el número de clientes conectados). Se recomienda hacer laboratorios utilizando la guía de NetAcad, ya que a mayor complejidad pueden presentar "bugs".
- Punto de Acceso Inalámbrico (AP) 3702i, tiene interfaz GigabitEthernet. Para utilizarlo es necesario que trabaje en conjunto con el Controlador LAN inalámbrico 2504 o 3504, ya que será configurado a través de ese equipo. Tenga en cuenta que debe conectar su fuente de alimentación (Adaptador de corriente) para que pueda funcionar (en la sección "Físico")
- Wireless-N Broadband Router (WRT300N), es un equipo inalámbrico que puede simular nuestros módems o enrutadores de internet inalámbricos caseros, muy útil para practicar laboratorios básicos. Tiene interfaces Ethernet (hasta 100 Mbps) para LAN y una interfaz Ethernet llamada "Internet". Tiene habilitado DHCP para brindar direccionamiento IP a su red LAN. Tenga en cuenta que tiene NAT habilitada por defecto y no puede ser deshabilitada, aunque también es posible configurar la función de reenvío de puertos ("Port Forwarding"). Nota: Una vez configurados, los equipos de la red LAN que son internos (Laptops, tablets, etc), éstos podrán comunicarse a la red externa (internet u otros equipos), sin embargo, un equipo de la red externa nunca podrá comunicarse con los equipos internos, esto es debido al NAT establecido por defecto. Esto puede cambiar si configura el acceso desde una red externa a través del "Port Forwarding"

Equipos de Seguridad:

- ASA 5505, tiene interfaces Ethernet (hasta 100 Mbps). Es el modelo más básico, sin embargo, muy útil para comenzar a configurar zonas de seguridad, ACL, VPN IPSec y otras funciones básicas.
- ASA 5506-X, tiene interfaces GigabitEthernet. Es un modelo que tiene opciones adicionales al ASA 5505.

Se recomienda hacer laboratorios utilizando la guía de NetAcad o contrastando con un equipo real, ya que a mayor complejidad pueden presentar "bugs".

Como novedad tenemos un Controlador de Red (Network Controller) y tener a nuestra disposición la interfaz de programación de aplicaciones (API: Application Programming Interface), que es la nueva tendencia de soluciones en redes de telecomunicaciones. Con esto vamos a tener nuevos laboratorios de práctica en Cisco Packet Tracer para la administración de los equipos de manera centralizada. Incluso podemos hacer simulaciones con dispositivos IoT (Internet of Things: Internet de las Cosas). Obviamente existirán limitaciones propias del software, sin embargo, para las siguientes versiones seguro nos brindarán más funcionalidades.

Figura 12: Opciones de Equipos para Redes Móviles y IoT Fuente: (learning network, 2023)

Utilizando el Simulador

En esta situación se hará uso del simulador en un ejemplo práctico de redes móviles utilizando los dispositivos y equipamiento que nos brinda Packet Tracer versión 8.2 que es la mas actual de la simulación de la infraestructura tecnológica que implementan las empresas de telecomunicaciones en nuestro medio que están de forma distribuida, vale decir tomamos en cuenta a las empresas de telecomunicaciones de Entel, Tigo y Viva respectivamente como se muestra en el interfaz del Packet Tracer:

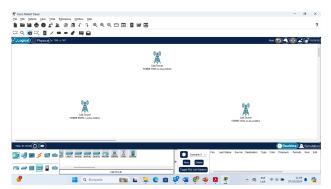


Figura 13. Disposición de las radiobases de las empresas Ente, Tigo y Viva

Fuente: Elaboración Propia

Una vez diseñado de la disposición de las torres se pasa a poder disponer de los dispositivos móviles que se vayan conectando a sus respectivos proveedores de servicio de telefonía móvil configurando el dispositivo a cada una de las torres, como se muestra a continuación.

figura 14. Configuración de dispositivo móvil a radiobase de empresa de telecomunicaciones

Fuente: Elaboración Propia

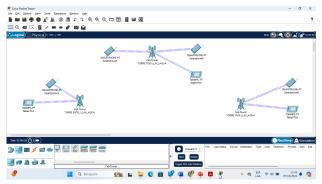


Figura 15. Dispositivos conectados a sus respectivas empresas de telecomunicaciones

Fuente: Elaboración Propia

Una vez hechas las configuraciones de las antenas y los dispositivos móviles a sus respectivas empresas de telecomunicaciones pasamos a instalar y configurar el server de la Central de Operaciones o CO para que mediante estos equipos pueda realizarse las llamadas respectivas entre los dispositivos móviles con un tipo de cable coaxial entre la torre y la CO, en este caso y se muestra a continuación.

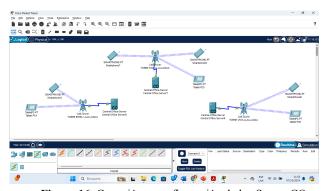
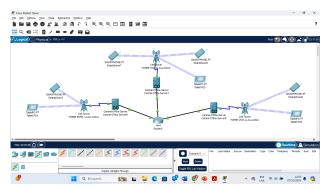



Figura 16. Conexión y configuración de los Server CO Fuente: Elaboración propia

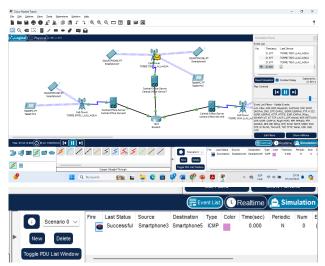

Seguidamente cada torre de una determinada empresa tiene que contar con su Central de Operaciones CO que esos equipos contemplan los conmutadores necesarios para poder realizar las comunicaciones entre dispositivos móviles que se vayan conectando a éste, vale decir existe comunicación solamente hasta ahora a su respectiva torre solamente y no así hacia los dispositivos conectados a las otras torres, para eso necesitamos instalar otro dispositivo llamados router que me sirve para centralizar las torres y de esta manera ya pueda existir las conexiones de todos los dispositivos de las diferentes empresas de telecomunicaciones utilizando un cable de red y una conexión fasethernet, como se muestra a continuación.

Figura 17. Conexión y configuración del router **Fuente:** Elaboración propia

3.2. Ejecutando la Simulación

Una vez realizado nuestro diseño de nuestra red móvil ya descrito anteriormente se pasa a ejecutar la simulación mediante el envío de paquetes entre los diferentes dispositivos conectados de las diferentes empresas de telecomunicaciones que se muestra a continuación.

Figura 18. Ejecutando la simulación mediante envío de paquetes **Fuente:** Elaboración propia

Cabe indicar que la primera simulación se realizó de forma gráfica en donde el smartphone envió un paquete al

smartphone de forma exitosa y se muestra en gráfico correspondiente.

Nuevamente realizamos otra simulación de forma gráfica donde la Tablet Pc 4 envía un paquete a la Tablet Pc 6 de forma exitosa y también realizamos otra simulación esta vez entre el smartphone 7 donde envía un paquete a la Tablet Pc 6 de forma exitosa y se muestra en el siguiente gráfico.

Figura 19. Envió de Paquetes entre Distintos Dispositivos Móviles **Fuente:** Elaboración Propia

Otra forma de poder simular es mediante consola que el programa Packet Tracer nos ofrece, y realizamos un ping a una dirección IP específica que se nos asigna de forma automática a cada dispositivo móvil y verificamos una ves que el puntero del mouse se para en el dispositivo y nos muestra toda la información que concierne al mencionado dispositivo móvil como se muestra en las siguientes figuras.

Figura 20. Asignación de IP automático al smartphone 3 Fuente: Elaboración propia

Figura 21. Asignación de IP automático a smartphone 6 **Fuente:** Elaboración propia

Una vez conocido la IP asignado de forma automática por el programa a cada dispositivo móvil mediante consola se puede verificar si existe el envío de paquetes realizando un PING seguido del número IP correspondiente en donde nos muestra las información si es que se envió los paquetes, envío de 4 paquetes de prueba y si se enviaron los cuatro o si hubo algún paquete que se perdió, esto será en función de la configuración y conexión de los dispositivos tanto físicos como lógica, y se muestra a continuación en el siguiente gráfico.

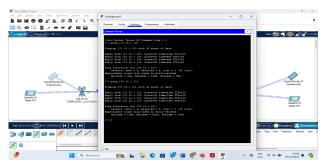


Figura 22. Uso de la consola para simular el envío de paquetes desde los dispositivos móviles

Fuente: Elaboración propia

3. CONCLUSIONES.

A lo largo de la elaboración del presente artículo podemos indicar que se hizo una descripción sucinta de todo lo que se tiene que conocer para hacer uso efectivo de un simulador de redes móviles tomando en cuenta desde el conocimiento de la teoría de la información y los elementos que este compone además de conocer los diferentes dispositivos móviles más sus características de cada uno de ellas y cual o cuales utilizar al momento de hacer la conexión a una red móvil, esto junto con las tecnologías que atravesó las redes móviles donde cada ha ido progreso añadiendo generación en funcionalidades, opciones y servicios en los dispositivos cada vez más modernos y de alta tecnología, todo esto no fuera posible si no tomáramos en cuenta el medio por el cual viaja la información, el mismo que sirve de camino para que la información llegue a su destino, con esto nos referimos a la señales de radiofrecuencia que irradian las radio bases (torres que tienen construidas e implementadas las empresas de telecomunicaciones en lugares estratégicos con todo el equipamiento necesario para poder cubrir cierta área brindando diferentes servicios). También es necesario el diseñar un mapa topológico de toda nuestra infraestructura de red móvil, esto nos servirá de plano para poder estructurar de mejor forma la disposición de los equipos necesarios al momento de implantar una radio base, con todo lo anterior ya podemos utilizar un software específico para poder hacer las simulaciones de nuestra red móvil y ver el funcionamiento que se tendrá antes de poder llevarlo a la implementación del mismo.

REFERENCIAS

Becvar Z, Mach P, Pravda I, (2020) Redes móviles Traducido por: Miquel Soriano, Primera edición, ISBN 978-80-01-05307-2

educapanama (Ed.). (s. f.). *Redes móviles: Que son las redesmoviles*.https://www.educapanama.edu.pa/?q=articulos-educativos/texto/redes-moviles. Recuperado 20 de septiembre de 2024.

de https://www.educapanama.edu.pa/?q=articulos-educativos/texto/redes-moviles

Cómo funcionan las redes móviles. (s. f.). https://es.simbase.com/learning/how-mobile-networks-work. Recuperado 20 de septiembre de 2024, de https://es.simbase.com/learning/how-mobile-networks-work

Mocampo. (2023, 26 junio). ¿Qué es la teoría de la información? - EHLI. https://blogs.uninter.edu.mx/ehli/index.php/2023/06/26/que-es-la-teoria-de-la-informacion/

Gudiña, V. (2024, 2 enero). Dispositivo móvil - Qué es, usos, definición y concepto. Definición.de. https://definicion.de/dispositivo-movil/#:~:text =Los%20dispositivos%20m%C3%B3viles%20son%20equip os,de%20fotos%20y%20bater%C3%ADa%20recargable.

Telecom, D. (2023, 10 mayo). De 1G a 5G: Evolución de las redes de telecomunicaciones. *Decision Telecom*. https://decisiontele.com/es/news/1g-5g-evolution-telecommunication-networks.html

Espada, B. (2021, 16 agosto). ¿Qué son el 1G, 2G, 3G, 4G y 5G y sus diferencias? *okdiario.com*. https://okdiario.com/curiosidades/que-significa-1g-2g-3g-4g-5g-3223153

Unknown. (s. f.). *TIPOS DE TRANSMISION*. https://mundodetelecomunicacion.blogspot.c om/p/tipos-de-transmision.html

Jiménez, J. (s. f.). Simuladores para virtualizar redes y aprender routing y switching. RedesZone. Recuperado 24 de septiembre de 2024, de https://www.redeszone.net/tutoriales/redes-cable/programa s-simular-red/

Tutorial: Introducción a Packet Tracer. (2022, 24 octubre). *Marcos Ruiz*. https://marcosruiz.github.io/posts/tutorial-introduccion-a-packet-tracer/

Cisco Learning Network. (s. f.-b). https://learningnetwork.cisco.com/s/article/el-software-de-simulacion-cisco-packet-trace

IMPLEMENTACIÓN DE UN SISTEMA DE CLASIFICACIÓN DE RESIDUOS MEDIANTE VISIÓN ARTIFICIAL PARA EL RECICLAJE

Ilsen Arlette Corpa Limachi
corpailsen@gmail.com
Ingeniería Informática
Universidad Nacional "Siglo XX"
Llallagua - Bolivia

Resumen- La creciente conciencia sobre la necesidad de prácticas sostenibles ha convertido el reciclaje de residuos en una prioridad global. El municipio de Llallagua enfrenta desafios significativos debido a la acumulación de desechos y la falta de sistemas de reciclaje adecuados. Esta investigación se centra en el desarrollo de un software de reciclaje basado en visión artificial para identificar y clasificar automáticamente diferentes tipos de basura, facilitando así el proceso de reciclaje para los residentes de Llallagua.

El software utiliza tecnologías avanzadas como redes neuronales para lograr una detección y clasificación precisa de los desechos. Los materiales y herramientas empleados incluyen hardware como computadoras y webcams, y software como Python, y varias librerías específicas para el procesamiento de imágenes.

La metodología adoptada es de naturaleza cuantitativa, descriptiva y aplicada, utilizando métodos como análisis-síntesis e inductivo-deductivo, además de técnicas de observación directa y revisión documental. La interfaz gráfica del software es intuitiva, mostrando la clasificación de los desechos y la información relevante de manera clara.

Los resultados de la investigación demostraron la efectividad del sistema en clasificar diferentes tipos de reciclaje, incluyendo cartón, desechos médicos, metal, plástico y vidrio.

Palabras Clave: Clasificación de residuos, Inteligencia artificial, Reciclaje, Visión artificial.

Abstract- Growing awareness of the need for sustainable practices has made waste recycling a global priority. The municipality of Llallagua faces significant challenges due to the accumulation of waste and the lack of adequate recycling systems. This research focuses on the development of recycling software based on computer vision to automatically identify and classify different types of garbage, thus facilitating the recycling process for the residents of Llallagua.

The software uses advanced technologies such as neural networks to achieve accurate waste detection and classification. The materials and tools used include hardware such as computers and webcams, and software such as Python, PyCharm, and various libraries specific to image processing.

The methodology adopted is quantitative, descriptive and applied in nature, using methods such as analysis-synthesis and inductive-deductive, as well as direct observation and documentary review techniques. The software's graphical interface is intuitive, displaying waste classification and relevant information clearly.

The research results demonstrated the effectiveness of the system in sorting different types of recycling, including cardboard, medical waste, metal, plastic and glass.

Keywords - Artificial intelligence , Artificial vision, Recycling, Waste classification.

1. INTRODUCCIÓN

Durante los últimos años, en el mundo existe un poco más de conciencia de la necesidad de prácticas sostenibles de residuos, el reciclaje de residuos se ha convertido en una prioridad para muchos países y lugares de Bolivia. El municipio de Llallagua enfrenta retos significativos en este ámbito, con la acumulación de desechos y falta de sistemas adecuados de reciclaje. Para abordar estas cuestiones el trabajo de investigación se centra en el reconocimiento de desechos para ver a que contenedor de reciclaje pertenece, utilizando la visión artificial.

La visión artificial es una tecnología emergente que permite a las máquinas interpretar y procesar imágenes de manera similar a la percepción humana. Este software utiliza dicha tecnología para identificar y clasificar automáticamente diferentes tipos de basura cuando se les muestra, facilitando así el proceso de reciclaje para los residentes de Llallagua.

Este artículo se explorará la implementación de este software de reciclaje con visión artificial. Al mismo tiempo se abordará los beneficios previstos, como la reducción de la contaminación y el aumento de tasa de reciclaje.

2. MATERIALES Y MÉTODOS 2.1. Materiales

Para el presente trabajo de investigación se hizo uno de los siguientes materiales tanto de software y hardware los cuales se muestran en la tabla.

Hardware	Software	
Computadora de	Python	
escritorio o laptop i5	Editores: PyCharm	
o superior	Librerías: tKinter, PIL,	
Web cámara	imutils, cv2, numpy,	
	ultralytics YOLO y math	
	Plataforma Web:	
	PythonAnywhere	

Tabla: Materiales **Fuente:** elaboración propia

Python: Python es un lenguaje de alto nivel de programación interpretado cuya filosofía hace hincapié en la legibilidad de su código. Se trata de un lenguaje de programación multiparadigma, ya que soporta parcialmente la orientación a objetos, programación imperativa y, en menor medida, programación funcional. (Wikipedia, 2024)

PyCharm: PyCharm es un entorno de desarrollo integrado (IDE) utilizado para programar en Python. Es desarrollado por la compañía JetBrains y viene en dos versiones: una versión gratuita conocida como PyCharm Community y una versión de pago llamada PyCharm Professional. (abcxperts, 2023)

Librerías: Las librerías que se utilizaron en esta investigación son:

- a) TKinter: es una librería del lenguaje de programación Python y funciona para la creación y el desarrollo de aplicaciones de escritorio. Esta librería facilita el posicionamiento y desarrollo de una interfaz gráfica de escritorio con Python. (Maldonado, 2024)
- b) PIL: es una librería complementaria de Python3 que agrega soporte para abrir, manipular y guardar muchos formatos de archivo de imagen diferentes. (Romano, julio)
- c) Imutils: conjunto de funciones que sirven para el procesamiento de imágenes como cambio de tamaño, clasificación de contornos, esqueletización, rotación, visualización, entre otras. (Pincay, 2021)
- d) Ultralytics YOLO: Es una herramienta eficaz para los profesionales que trabajan en visión por ordenador y ML, que puede ayudar a crear modelos precisos de detección de objetos. (ultralytics, 2024)
- e) Math: es un archivo de cabecera de la biblioteca estándar del lenguaje de programación C diseñado para operaciones matemáticas básicas (wikipedia, 2024)
- f) Flask: Es un microframework para el desarrollo web escrito en Python. Esto significa que te proporciona las herramientas básicas y esenciales para crear aplicaciones web de manera rápida y sencilla, sin sobrecargarte con funcionalidades innecesarias. (IONOS, 2023)
- g) PythonAnywhere: Es un servicio en línea que te permite escribir, ejecutar y desplegar aplicaciones en Python directamente desde tu navegador web. Es como tener un ordenador con Python preinstalado y configurado al que puedes acceder desde cualquier lugar con conexión a internet.

2.2. Métodos

El modelo adoptado en esta investigación fue de naturaleza favorable, con un predominante enfoque cuantitativo. La investigación se definió como descriptiva y aplicada. Se emplearon diversos métodos de investigación, incluyendo el análisis-síntesis, el método inductivo-deductivo. Además, se utilizaron técnicas como la observación directa y la revisión exhaustiva de la literatura relevante.

Interfaz Gráfica

La interfaz gráfica es intuitiva y fácil de usar. En el panel izquierdo, se presenta la clasificación correspondiente al tipo de desecho. En el centro, se muestra la imagen capturada por la cámara, que detecta el objeto en cuestión. En el panel derecho, se despliega información detallada acerca del desecho identificado

Fig 1: Reconocimiento de un plástico Fuente: elaboración propia

3. RESULTADOS

El fin de esta investigación de captar imágenes representativas se llevó a cabo la investigación sobre los distintos tipos de reciclaje. Como resultado se seleccionaron los siguientes tipos de reciclaje.

- Cartón (gris)
- Medical (rojo)
- Metal (amarillo)
- Plástico (azul)
- Vidrio (blanco)

Fig 2: Reconocimiento de un riesgo biológico Fuente: elaboración propia

```
# Libraries
from tkinter import *
from PIL import Image, ImageTk
import imutils
import cv2
import numpy as np
from utralytics import YOLO
import math

lumage

def clean_lbl():
    # Clean
    lblimg.config(image='')
    lblimgtxt.config(image='')

def images(img, imgtxt):
    img = img
    imgtxt = imgtxt

    # Img Detect
    img = np.array(img, dtype="uint8")
    img = Image.fromarray(img)

img_ = Image.fromarray(img)

img_ = ImageTk.PhotoImage(image=img)
    lblimg.image = img_

# Img Text
    imgtxt = op.array(imgtxt, dtype="uint8")
    imgtxt = cv2.cvtColor(imgtxt, dtype="uint8")
    imgtxt = rp.array(imgtxt, dtype="uint8")
    imgtxt = rp.array(imgtxt, dtype="uint8")
    imgtxt = ImageTk.PhotoImage(image=imgtxt)
    lblimgtxt.configure(image=img_txt)

lblimgtxt.image = img_txt
```

Fig 3: Código del proyecto Fuente: elaboración propia

4 DISCUSIÓN

El sistema de clasificación de residuos basado en visión artificial demostró ser efectivo en la identificación de desechos reciclables, contribuyendo a la gestión de residuos. Comparado con otros estudios, su precisión es similar, pero enfrenta retos como la infraestructura tecnológica limitada y condiciones variables. A pesar de estas dificultades, el sistema es prometedor.

Las advertencias incluyen la necesidad de mantener el software actualizado. Además, la participación ciudadana es esencial para asegurar una separación adecuada de los residuos antes de su clasificación automática.

5. CONCLUSIONES

La detección y clasificación de basura mediante el uso de inteligencia artificial y visión artificial permite una clasificación precisa de los desechos, proporcionando un aporte significativo a la población al facilitar el reciclaje. Este proceso no solo optimiza la gestión de residuos, sino que también permite la transformación de la basura reciclada en materias primas utilizables para nuevos procesos de fabricación.

La detección y clasificación exacta se logra a través del empleo de tecnologías avanzadas como las redes neuronales, específicamente utilizando mapas de características autoorganizativas. Estas herramientas tecnológicas permiten la identificación y categorización eficiente de los desechos, mejorando significativamente la eficiencia del reciclaje en el municipio. Este sistema ofrece una solución efectiva y práctica para la gestión de residuos, promoviendo prácticas sostenibles y beneficiosas para la comunidad.

6. REFERENCIAS

abcxperts. (3 de agosto de 2023). abcxperts. Obtenido de

https://abcxperts.com/que-es-pycharm-y-su-comparacion-con-otros-ides/

IONOS. (3 de enero de 2023). *IONOS*. Obtenido de https://www.ionos.com/es-us/digitalguide/paginas-we b/desarrollo-web/flask/

Maldonado, R. (10 de abril de 2024). *keepcoding*. Obtenido de

https://keepcoding.io/blog/que-es-tkinter/#:~:text=Tkinter%20es%20una%20librer%C3%ADa%20del,gr%C3%A1fica%20de%20escritorio%20con%20Python.

Pincay, A. R. (2021). Detección de Mascarilla para COVID-19 a través de Aprendizaje Profundo usando OpenCV y Cascade Trainer GUI. 68-73.

Romano, J. P. (2 de julio). *medium*. Obtenido de 2020:

https://jpromanonet.medium.com/como-instalar-pytho n-y-sus-modulos-m%C3%A1s-utilizados-7ff41913de 1d#:~:text=%C2%BFQu%C3%A9%20es%20Pillow(PIL)%3F,Mac%20OS%20X%20y%20Linux.

ultralytics. (23 de septiembre de 2024). *ultralytics*. Obtenido de https://www.ultralytics.com/es/yolo

wikipedia. (8 de abril de 2024). wikipedia.

Wikipedia. (11 de junio de 2024). *Wikipedia*. Obtenido de https://es.wikipedia.org/wiki/Python

VALIDACIÓN DE IDENTIDAD BIOMÉTRICA PARA EL REGISTRO DE ENTRADA DEL PERSONAL IIDAI

Alex Cristian Ramos Colque <u>cramoscolque@gmail.com</u>

Ingeniería Informática

Universidad Nacional "Siglo XX"

Llallagua – Bolivia

Resumen - Se ha desarrollado un sistema de autenticación basado en el reconocimiento facial, utilizando diferentes tecnologías como Python, flash, etc. El sistema permite a los usuarios registrarse mediante la captura de una imagen facial y posteriormente autenticar su identidad comparando una nueva imagen con las imágenes ya registradas en la base de datos. La implementación se llevó a cabo utilizando diversas bibliotecas de reconocimiento facial y procesamiento de imágenes, incluyendo OpenCV para la visión por computadora. Estas herramientas permiten detectar y analizar características faciales con alta precisión. El sistema garantiza una autenticación eficiente y segura, evitando la necesidad de contraseñas tradicionales y reduciendo el riesgo de acceso no autorizado. Además, el uso de Flask facilita la creación de una interfaz web interactiva y amigable para el usuario. En conjunto, esta solución ofrece una mejora significativa en la seguridad y la usabilidad para la autenticación de usuarios.

Palabras clave - Autenticación, Flask, Procesamiento de imágenes, Reconocimiento facial.

Abstract - An authentication system based on facial recognition has been developed using different technologies such as Python, flask, etc. The system allows users to register by capturing a facial image and subsequently authenticate their identity by comparing a new image with images already registered in the database. The implementation was carried out using various facial recognition and image processing libraries, including OpenCV for computer vision. These tools allow high precision detection and analysis of facial features. The system guarantees efficient and secure authentication, avoiding the need for traditional passwords and reducing the risk of unauthorized access. In addition, the use of Flask facilitates the creation of an interactive and user-friendly web interface. Taken together, this solution offers a significant improvement in security and usability for user authentication.

Keywords - Authentication, Facial recognition, Flask, Image processing,

1.- INTRODUCCIÓN

La autenticación biométrica se ha convertido en una tecnología prominente debido a su capacidad para proporcionar una seguridad mejorada en comparación con los métodos tradicionales basados en contraseñas. El reconocimiento facial, en particular, ha ganado popularidad debido a su naturaleza no intrusiva y a la disponibilidad de hardware compatible. Este proyecto desarrolla un sistema de login basado en reconocimiento facial utilizando Python, Flask y la biblioteca face recognition.

2.- MATERIALES Y MÉTODOS

2.1 Entorno de Desarrollo

Se utilizó el IDE PyCharm Community Edition 2024.1.1 debido a su capacidad para virtualizar un servidor web y facilitar la codificación en distintos lenguajes de programación. La plataforma de despliegue que se utilizó fue pythonanywhere.

2.1.1 Lenguaje de Programación

a) Python: Lenguaje principal del proyecto.

- **b) Html, Css, JavaScript:** Para la creación de interfaz de usuario.
- **2.1.2 Framework Web**: Flask escrito en Python, ideal para crear aplicaciones web de forma rápida y sencilla. Así también permite construir una amplia gama de aplicaciones web, simples hasta APIs complejas.

```
import os
import time
import face_recognition
from flask import Flask, request, Response, send_from_directory

PATH_IMAGES_DIR = './senrolados'
TEMP_DIR = './temp'
STATIC_DIR = './temp'
STATIC_DIR = './temp'
STATIC_DIR = './sextic'
enrolados_faces = []
res = os.listin(rGATH_IMAGES_DIR)
app = Flask(__name__)

lumage (dynamic)
Bapp_route('/')
def index():
    return Response(open('index.html', encoding='utf-8').read(), mimetype="text/html")
Bepp_route('/identrifacen.html')
def index():
    return Response(open('index.html', encoding='utf-8').read(), dimetype="text/html")
Bepp_route('/identrifacen.html')
def identrifacen.html')
def identrifacen.html')
def identrifacen.html')
def final.html():
    return Response(open('index.html', encoding='utf-8').read(), mimetype="text/html")
Bepp_route('/index.html')
def index.html():
    return Response(open('index.html', encoding='utf-8').read(), mimetype="text/html")
def index.html():
    return Response(open('index.html', encoding='utf-8').read(), mimetype="text/html")
def index.html():
    return Response(open('index.html', encoding='utf-8').read(), mimetype="text/html")
Bepp_route('/index.html')
def index.html():
    return Response(open('utils_js').read(), mimetype="text/javescript")
Bepp_route('/openev.js')
```

Fig. 1: Creación de aplicación web con Flask

Fuente: Elaboración Propia

2.2 Procesamiento de imágenes

Se utilizó diferentes bibliotecas de python para este procesamiento de imágenes. OpenCv haarcascade_frontalface_default.xml biblioteca para la visión por computadora Face Recognition biblioteca para el reconocimiento facial, Dlib biblioteca de herramientas de aprendizaje automático.

La biblioteca face recognition se ha utilizado en proyectos de reconocimiento facial debido a su precisión en la detección y análisis de características faciales (Steve Wooding 2018).

```
chtcl oncestatemen 'return true' ankeydam' return true'>
dody wnload-metiament('tempurizador()',1000)">

cerigty

let stop = 0;
let stop = 0;
let videoStream;
let identificador = '';

function openCvBeady() {
    cvfonGontimeInitialized'] = () :> {
        cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            cvfonGontimeInitialized'] = () :> {
            considering contimeInitialized'] = () :> {
            considering contimeInitialized': () :> {
            considering contimeInitialized': () :> {
            considering contime contine contine contine contim
```

Fig. 2: Visión por computadora Fuente: Elaboración Propia

2.3 Modelos entrenados para el reconocimiento, detección y predicción de rostros.

a) mmod_human_face_detector.dat: Este modelo está entrenado con el conjunto de datos:http://dlib.net/files/data/dlib_face_detection_datas et-2016-09-30.tar.gz. Se creó el conjunto de datos encontrando imágenes de rostros en muchos conjuntos de datos de imágenes disponibles públicamente (excluyendo el conjunto de datos FDDB).

b) shape_predictor_5_face_landmarks.dat: Este es un modelo de referencia de 5 puntos que identifica las esquinas de los ojos y la parte inferior de la nariz. Se entrenó con el conjunto de datos que se encuentra en: http://dlib.net/files/data/dlib_faces_5points.tar, que consta de 7198 rostros. Se creó este conjunto de datos descargando imágenes de Internet y anotándolas con la herramienta imglab de dlib. Este modelo está diseñado para funcionar bien con el detector de rostros HOG de dlib y el detector de rostros CNN (mmod human face detector.dat).

c)shape predictor 68 face landmarks.dat

Este modelo está entrenado en el conjunto de datosbug300W(https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/).

d)dlib_face_recognition_resnet_model_v1.dat: La red se entrenó desde cero con un conjunto de datos de aproximadamente 3 millones de rostros. Este conjunto de datos se deriva de dos conjuntos de datos.

Εl conjunto de datos de face scrub (http://vintage.winklerbros.net/facescrub.html) el conjunto datos de VGG (http://www.robots.ox.ac.uk/~vgg/data/vgg_face/). hizo este modelo entrenando una CNN de reconocimiento facial y luego usando métodos de agrupación de gráficos y mucha revisión manual para limpiar el conjunto de datos. Al final, aproximadamente la mitad de las imágenes son de VGG v fase scrub. Además, el número total de identidades individuales en el conjunto de datos es 7485. Se evitaron superposiciones de identidades en LFW.

3.- RESULTADOS

El sistema desarrollado permite el registro y la autenticación de usuarios utilizando imágenes faciales. Durante las pruebas, el sistema mostró una alta precisión en la identificación de rostros previamente registrados. Se tiene los archivos de index.html, enrrolar.html, identificar.html y final.html como interfaz para el registro y la autenticación.

Fig. 1: Interfaz de la página web. Fuente: Elaboración propia

Fig. 2: Interfaz de registro único mediante contraseña y la captura de fotografía.

Fuente: Elaboración Propia

Fig. 3: Interfaz de inicio de sesión Fuente: Elaboración Propia

Fig. 4: Interfaz de Bienvenida una vez reconocido con éxito al usuario

Fuente: Elaboración propia

Fig. 5: Proceso de reconocimiento facial Fuente: Elaboración propia

Se procesa la imagen para extraer y codificar las características faciales:

- **face_recognition.load_image_file()**: carga la imagen.
- **face_recognition.face_encodings():** utiliza modelos pre entrenados para extraer las características faciales del usuario
- **face_recognition.compare_faces()**: utiliza las codificaciones faciales y las compara con las caras registradas, con un umbral de tolerancia.

4.- CONCLUSIONES

El desarrollo de un sistema de login con reconocimiento facial utilizando Python y Flask demostró ser una solución viable y eficiente para la autenticación de usuarios. La detección y comparación precisa del

usuario y su respectivo dato personal se puede lograr mediante el uso de herramientas tecnológicas como detección de rostros, reconocimiento facial, representación facial, además del uso de bibliotecas de visión artificial y framework web.

La implementación presentada en este artículo puede ser utilizada como base para futuros desarrollos en el campo de la biometría y la seguridad informática.

Destacar que, si bien el sistema ha demostrado ser efectivo, aún existen aspectos que pueden ser mejorados en futuras investigaciones. Entre ellos, se encuentran la optimización del rendimiento para procesar imágenes y vídeos en tiempo real, la mejora de la precisión del reconocimiento facial en condiciones adversas de iluminación y la implementación de mecanismos de seguridad aún más robustos para proteger los datos de los usuarios.

5. REFERENCIAS

Jose F. Velez Serrano, Ana B. Moreno Diaz, Angel Sanchez C, Jose Luis E. Sanchez- Marin Visión por computador: http://www.visionporcomputador.es/libroVision/VisionPorComputador.pdf

Face Recognition with OpenCV (2018). Steve Wooding

Visión artificial: Fundamentos y aplicaciones (2017). De la visión artificial en la actualidad https://bcnvision.es/blog-vision-artificial/los-fundament os-y-aplicaciones-de-la-vision-artificial-en-la-actualidad /

Gonzalo Pajares Martinsanz (2010). Visión por Computador Imágenes Digitales y Aplicaciones

Stuart Russell, Peter Norvig. Inteligencia Artificial Fundamentos, Práctica y Aplicaciones

Handbook of Face Recognition (2011). Stan Zisserman, Michael Black, y David J. Teller

Face Recognition: Adam Geitgey https://github.com/ageitgey/face_recognition

Desarrollo Web con Flask Miguel Grinberg

Davisking / dlib-models https://github.com/davisking/dlib-models

PROMOVER LAS ARTESANÍAS Y TEJIDOS DE GRAN VALOR CULTURAL E HISTÓRICO DEL NORTE POTOSÍ A TRAVÉS TECNOLOGÍAS 3D EN LA WEB

Lisbeth Quiruchi. lisbethquiruchi@gmail.com Ingeniería Informática Universidad Nacional "Siglo XX" Llallagua - Bolivia

Resumen - Ante el poco conocimiento de la historia de importantes del norte potosí de nuestra región y por las reivindicaciones nuestra identidad cultural además al no existir un espacio físico como un museo u otro espacio que transmita este legado cultural tradicional, es que se optó por el desarrollo de un museo con tecnología WebXR que combina la realidad virtual y la realidad aumentada con funcionamiento en la Web para transmitir el legado de nuestro antepasados de forma novedosa.

Para este propósito se emplearon diversos métodos, técnicas y herramientas libres que permitieron implementar la tecnología Web con contenido tridimensional e información histórica del Norte Potosi y se desplegó su funcionamiento en la nube.

De esta forma el museo con tecnología WebXR es accesible a cualquier persona a través de un Smartphone o una computadora en cualquier momento y lugar, brindando además, una nueva forma de transmitir el aprendizaje cultural e histórico, ampliando la información de una forma interactiva, didáctica, entretenida y cautivante, buscando que el visitante no sea simplemente un sujeto pasivo y receptor de información, sino, un actor activo que interactúa con los objetos virtuales, despertando su interés por el conocimiento y permitiendo la preservación de la identidad cultural de nuestra región.

La exploración de la cultura y tradiciones de tejidos y artesanías del norte de Potosí a través de nuestra página web animada y museo 3D ha sido una inmersión fascinante en la riqueza cultural de esta región. Desde la presentación visual de los procesos de creación hasta la experiencia tridimensional del museo virtual, hemos celebradola maestría artesanal y la historia viva que cada tejido y artesanía lleva consigo.

Palabras clave: Preservación de nuestra cultura del Norte Potosí, Realidad Aumentada, Realidad Extendida, Realidad Virtual, Tecnología tridimensional, WebXR.

Abstract - Given the little knowledge of the history of important people from the northern Potosi of our region and the demands of our cultural identity, in addition to the lack of a physical space such as a museum or other space that transmits this traditional cultural legacy, we opted for the development of a museum with WebXR technology that combines virtual reality and augmented reality with operation on the Web to transmit the legacy of our ancestors in a new way.

For this purpose, various methods, techniques and free tools were used that allowed WebXR technology to be implemented with three-dimensional content and historical information of Norte Potosi and its operation was deployed in the cloud.

In this way, the museum with WebXR technology is accessible to anyone through a Smartphone or a computer at any time and place, also providing a new way of transmitting cultural and historical learning, expanding the information in an interactive, didactic way. entertaining and captivating, seeking that the visitor is not simply a passive subject and recipient of information, but rather an active actor who interacts with virtual objects, awakening their interest in knowledge and allowing the preservation of the cultural identity of our region.

Exploring the culture and traditions of weaving and crafts of northern Potosí through our animated website and 3D museum has been a fascinating immersion in the cultural richness of this region. From the visual presentation of the creation processes to the three-dimensional virtual museum experience, we have celebrated the craftsmanship and living history that each fabric and craft carries with it.

Keywords - Augmented Reality, Extended Reality, Preservation of our culture of Northern Potosí, Virtual Reality.

1. INTRODUCCIÓN

"El desarrollo web, es el proceso de creación y mantenimiento de sitios web". (Seguro, 2022).

"Un sitio web, por lo tanto, es un espacio virtual en Internet. Se trata de un conjunto de páginas web que son accesibles desde un mismo dominio o subdominio de la World Wide Web (WWW)". (Pérez Porto, 2023).

"Se conoce como página Web, página electrónica o página digital a un documento digital de carácter multimediático, adaptado a los estándares de la World Wide Web (WWW) y a la que se puede acceder a través de un navegador Web". (Equipo editorial, 2021).

"OpenGL es una API multiplataforma de gráficos que especifica una interfaz de software estándar para hardware de procesamiento de gráficos 3D". (Equipo editorial, 2019).

"WebGL es una interfaz de programación de aplicaciones gráficas (API) creada para su uso en aplicaciones web. Se basa en el lenguaje integrado de gráficos abiertos". (Wiki, 2022)

"THREE JS es una biblioteca liviana escrita en JavaScript para crear y mostrar gráficos animados por ordenador en 3D en un navegador Web y puede ser utilizada en conjunción con el elemento canvas de HTML5, SVG o WebGL". (Perez, 2016).

"HTML un lenguaje de marcación de elementos para la creación de documentos hipertexto, muy fácil de aprender, lo que permite que cualquier persona, aunque no haya programado en la vida, pueda enfrentarse a la tarea de crear una web". (Alvarez, 2001) (Alvarez, 2001) (Alvarez, 2001)

"CSS es un lenguaje de diseño gráfico para definir y crear la presentación de un documento estructurado escrito en un lenguaje de marcado". (wikipedia, 2023).

"JavaScript es el lenguaje de programación encargado de dotar de mayor interactividad y dinamismo a las páginas web". (Juan, 2005). "Colocar contenido 3D **p**uede ser una gran alternativa para lograr grandes resultados audiovisuales". (We're Videocontent, 2022).

Ejemplos de páginas Web con contenido 3D, Steven Wittens, Delibar, FeedStitch, Ready Made Designs, Comcast Town, Designmess, From The Couch, Pixel Graphix, UmQuarto, FULL Creative, Ctrl+N, Mr. Joe Payton, Meomi. (Author, 1995-2023).

Situación Problemática

El problema que se presenta es la falta de interés y apreciación de las artesanías tradicionales de Potosí, lo que ha llevado a la disminución de la producción y la posible extinción de estas formas de arte.

Además, la pandemia del COVID-19 ha provocado una disminución en la afluencia de turistas que compran y aprecian estas artesanías, lo que ha afectado negativamente a los artesanos locales.

La visualización 3D ofrece una oportunidad única para promover el turismo cultural y la preservación de las artesanías tradicionales, se propone la utilización de la Realidad Aumentada en 3D, permitirá a los turistas y a los habitantes locales apreciar y aprender sobre las artesanías tradicionales de Potosí en una forma más atractiva e interactiva. Pudiendo ayudará a documentar y preservar las artesanías y las técnicas tradicionales para las generaciones futuras

Formulación del Problema

¿Cómo desarrollar una experiencia de Realidad Aumentada en 3D permitiendo a los turistas y a los habitantes locales aprender y apreciar sobre las artesanías y las técnicas tradicionales de forma intuitiva y fluida de nuestra Región Potosí?

Objetivo General

Crear un Sitio Web accesible, preservando las artesanías tradicionales y promoviendo el turismo cultural de Potosí mediante el uso de la experiencia de la Realidad Aumentada interactiva, especialmente en los tiempos de pandemia en los que la afluencia de turistas ha disminuido.

Trabajos Similares

"**Sketchfab** es un sitio web utilizado para visualizar y compartir contenido 3D en línea". (wikipedia, 2020).

"**Poly** es una herramienta creada por Google para ayudar a los desarrolladores que trabajan en la creación de elementos para realidad aumentada". (EDICIONES S.L., 2021).

"**Meomi** Design Inc es un estudio de diseño canadiense/estadounidense con sede en Vancouver y Los Ángeles fundado por Vicki Wong y Michael C. Murphy en 2002". (Scholastic, 2014).

"Pete Nottage es una de esas páginas web creativas que resaltan gracias a ilustraciones que siguen propósitos claros: entretener, guiar y simplificar la experiencia". (Higuerey, 2020).

"Pieces es una página destinada a transmitir reflexiones a los visitantes sobre especies animales en peligro con un diseños geométricos y animaciones que se van disparando a medida que tiramos hacia abajo". (Higuerey, 2020).

2. METODOLOGÍA

Lo que se hizo fue recabar información del norte potosí e

información de los tejidos y artesanías consultando fuentes como: el internet, revistas e imágenes, para ello se empleó la técnica de la observación.

En una primera fase se selección la cada información e imágenes de los cuales se transmitirá cada información y se recabo información histórica y datos sobre cada uno de ellos, así como fotografías de cada tejidos y artesanías de la región, los tejidos y artesanías seleccionados notables del Norte Potosí fueron:

- El tejido de **Jalq'a** es considerado el más bello de Bolivia. Se caracteriza por la predominancia de figuras y por una ausencia
- Casi total de formas simétricas. En colores oscuros y sin contrastes, los artesanos representan animales salvajes: los khurus.
- Los textiles de Calcha (los más representativos): son piezas donde predomina el negro, con detalles de « pallai
- Casi blancos, y con franjas rojas, verdes, lilas y amarillas.
- El textil de Amarate: Se caracteriza por la predominancia del rojo con blanco y por la ausencia de representaciones animales, con algunas excepciones.
- Los tejidos Tarabuco muestran actividades humanas; por ejemplo las fiestas, la siembra, la cosecha o una corrida de toros. Reflejan el placer y la memoria de los pueblos originarios. Las mujeres tejedoras poseen una increíble habilidad creadora que siempre está en constante renovación, como la vida misma.
- La Cerámica y Alfarería en varias comunidades de Potosí, los alfareros locales crean piezas de cerámica tradicionales. Estas pueden incluir ollas, platos, tazones y otros utensilios decorados con motivos indígenas.
- La orfebrería es una forma de arte importante en Potosí. Los artesanos trabajan con metales preciosos como la plata y el oro para crear joyas y objetos decorativos. Puedes encontrar piezas intrincadamente detalladas con diseños que a menudo están inspirados en la iconografía indígena.
- Artistas locales tallan esculturas en madera que representan figuras religiosas, animales y personajes folklóricos. Estas esculturas a menudo se utilizan en festivales y eventos culturales.
- La cestería es otra forma de artesanía común en la región. Los artesanos crean cestas, bandejas y otros objetos utilitarios utilizando técnicas tradicionales de tejido.

- En algunas comunidades, los artesanos fabrican instrumentos musicales tradicionales, como la zampoña (una especie de flauta de pan) y tambores. Estos instrumentos son importantes en eventos culturales y festivales locales.
- En ciertas áreas de Potosí, los artesanos trabajan con piedra para tallar esculturas y objetos decorativos.
 La piedra tallada a menudo representa elementos de la naturaleza y la historia local.

En una segunda fase en base a la información recopilada, se procedió a un análisis y diseño para definir los alcances, elementos e información que se incluiría en el página web y museo WebXR, así como su forma de presentación, funcionalidades y transmisión tanto en el módulo de realidad aumentada.

El objetivo del módulo la página web con realidad aumentada e imágenes 360 es que el usuario navegue en la web de forma inmersiva en un mundo tridimensional, donde pueda recorrer el museo como si estuviese en un museo físico, pero además con las posibilidad de interactuar con los elementos presentes de la página con animación e imágenes 360, de forma de obtener información de la historia del datos del Norte potosí.

El módulo con funcionamiento sobre la web en un servidor en la nube, con el fin de que sea accesible al usuario en cualquier momento, tiempo y lugar, de esta forma la página web 3d que tiene características de realidad extendida o WebXR.

En la tercera base se diseñó la página con la información recabada con animación y color ajustadas a la necesidad del usuario usando HTML, CSS y JavaScript.

En una cuarta fase se procedió con el proceso de modelado tridimensional de los diferentes objetos presentes en el museo, entre los que se tiene: el ambiente del museo, elementos decorativos del ambiente, arcos, títulos 3d, los cuadros, pedestales, los bustos, estatua y avatares de los os y artesanías y otros modelos; el modelado de los elementos se fue refinando de acuerdo a los resultados que se fueron obteniendo y las mejoras deseadas. Para esta etapa se hizo uso principalmente de herramientas libres como Blender, kritar.

En una quinta fase se procedió con la codificación del museo, iniciando con el módulo de la página web, posteriormente subir imágenes 360 y realidad aumentada. Para esta etapa se hizo uso principalmente herramientas y lenguajes libres como: HTML, CSS, Javascript, AFrame, y Three.js.

Finalmente se fueron haciendo pruebas sobre diferentes navegadores y dispositivos lo que permitió ir mejorando los modelos y el código, con el fin de obtener buenos resultados deseados.

3. RESULTADOS

Los resultados obtenidos se describen a continuación:

a) Página Web

El diseño y Estructura la implementación de animación colores y selección de imágenes, con el fin de que carga y el funcionamiento de la página sea veloz, siendo este aspecto importante como entrada principal sobre la web.

Al igual de las sub páginas con tienen la implementación de información, el museo 3d, imágenes 360 y animación musical e imágenes de IA a continuación se presenta algunas imágenes de la página web con la información e imágenes seleccionadas.

Fig.1 Vista modelo tridimensional del ambiente del museo Fuente: Elaboración propia

Fig.2 Vista de sub página de Datos con imágenes IA e Información.

Fuente: Elaboración propia

Fig.3 tejido y artesanía. Fuente: Elaboración propia

Animación Musical Sonido y Letra

Se introdujo letra y sonido con animación 2d utilizando animación de voz a video con la herramienta Bing y diseño o estilo de implementación para el texto con una directa funcionalidad Display, a continuación, se presenta algunas imágenes de muestra.

Fig. 4 Vista de sub página de himno de Potosí y Música del Norte Potosino. Fuente: Elaboración propia

Modelo Tridimensional a)

Se obtuvieron diversos modelos tridimensionales, los cuales se modelaron con baja cantidad de polígonos, con el fin de que la carga y el funcionamiento del museo sobre la web sea veloz, siendo este aspecto muy importante para el rendimiento apropiado del museo sobre la web

Inicialmente se modeló el ambiente del museo tridimensional, como el espacio que representará al museo y por el cual navegará el usuario, para ello se modeló arcos, marcos y detalles ornamentales para el ambiente, también se generó las diversas texturas para el ambiente y elementos ornamentales, a continuación, se presenta algunas imágenes del modelado del museo tridimensional en Blender.

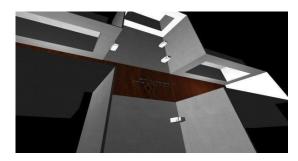


Fig. 5 Vista modelo tridimensional del ambiente del museo Fuente: Elaboración propia

También se procedió a modelar tridimensionalmente diversos cuadros y letreros, a los cuales se incorporó fotografías y texturas, en el caso de los cuadros, también se procedió a colocar títulos en 3d para identificarlos apropiadamente. Estos cuadros se trabajaron como modelos independientes con el fin de interactuar con ellos en el modelo. Algunas imágenes de esta etapa se pueden apreciar en las siguientes imágenes:

Fig. 6 Artesanía de cerámica Fuente: (El potosí, 2024)

Fig. 7 Artesanía de cestería Fuente: (Opinión, 2014)

Luego se procedió con el modelado tridimensional de estatuas y avatares de los diferentes tejidos y artesanías que formarían parte del museo 3d y con los cuales también se interactúa en el museo. En las siguientes imágenes se puede apreciar el modelado de la estatua y algunos modelos de artesanía:

b) Implementación de funcionalidades mediante código

Posteriormente se llevó adelante la codificación de diversas rutinas para implementar los módulos tanto como de realidad aumentada 3D, realizando el despliegue de toda la escena, cámara, renderizador, las luces y entorno del tridimensional, también escenario se implementando gradualmente las rutinas para el movimiento en primera persona por el escenario de modo virtual tridimensional recuperando su posición por el escenario, así como las rutinas de importación de los modelos tridimensionales en el escenario y colocarlos en sus respectivos lugares, finalmente se incorporaron modelo 3d relacionadas a la artesanías y tejidos.

Todo esto se implementó en base a solo código empleando las herramientas, librerías y lenguajes informáticos HTML, CSS, JavaScript, Three.js, AFr ame, model-viewer, esto se implementó en la nube empleando la PaaS[11] Glitch que permite almacenar todo lo requerido y además que brinda un entorno de codificación además de otras herramientas, lo que permitió el despliegue y las pruebas inmediatas en la nube a medida que se desarrollaba cada módulo.

Los resultados de la implementación de funcionalidades se pueden apreciar en las siguientes imágenes:

Fig. 8 Muestra del museo 3d. Fuente: Elaboración propia

Fig. 9 Muestra de información mediante estilo. Fuente: Elaboración propia

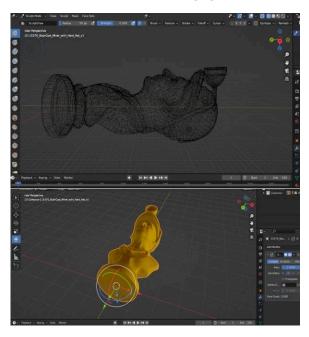


Fig. 10 Vista de modelo de estatua del minero en Blender. Fuente: Elaboración propia

b) Implementación de imágenes 360 con diseño externo.

Una vez finalizado el desarrollo del museo WebXR para del Norte Potosí, se procedió a la demostración y algunas pruebas con algunos usuarios, quienes demostraron un interés y predisposición al aprendizaje con el museo, donde no se tuvo ningún inconveniente con el funcionamiento del museo.

Fig.11 Prueba del museo WebXR con usuario. Fuente: Elaboración propia

c) Implementación de imágenes 360 con diseño externo.

Se realizaron imágenes de 360 grs. Que muestre de forma circunferencia con la aplicación Photo 360, implementada en la página web con three.js de forma interactiva y que contenga información.

Fig. 12. Vista de las imágenes 360 Fuente: Elaboración propia

4. CONCLUSIONES

La tecnología de Realidad extendida sobre la Web o WebS se constituye en una herramienta tecnológica muy útil, ya que permite nuevas formas para que la información llegue al usuario de forma interactiva, de forma entretenida creando una experiencia única que induce a interactuar, captura la atención y hace que el usuario se vuelva protagonista al mismo tiempo que aprende y es útil para aplicarlo a museos.

Se logró desarrollar una página 3d en la web de la

cultura y tradiciones de tejidos y artesanías del norte de Potosí, es evidente que esta región encierra un tesoro invaluable de conocimientos, habilidades y expresiones artísticas. para del Norte, empleando modelos tridimensionales, incorporando elementos de audio, imagen, elementos interactivos, etc. mediante la realidad extendida, que se relacionan entre sí y hacen una experiencia única, atractiva y agradable de aprender, permitiendo preservar y transmitir su identidad única.

Gracias al internet y los servicios en la nube, la página web 3D acerca del norte potosí, está al alcance de cualquier institución: como museos, colegios, universidades, instrucciones gubernamentales, grupos de estudio, personas particulares, etc., estando disponible en cualquier tiempo, momento y lugar.

REFERENCIAS

Alvarez, M. A. (01 de Enero de 2001). qué es html. obtenido de desarrolloweb: https://desarrolloweb.com/articulos/que-es- html.html

Author, A. t. (1995-2023). 3d elements in web design showcase. obtenido de webfx: https://www.webfx.com/blog/web-design/3d-elements-web-design/#

Ediciones s.l. (mayo de 2021). poly. obtenido de copyright :https://www.zonamovilidad.es/poly-la-herramienta-de-google-que-crea-objetos-3d-para-realidad-virtual-y-realidad-aumentada-

Equipo editorial. (27 de diciembre de 2019). OpenGL es. obtenido de developer: https://developer.android.com/guide/topics/g raphics/opengl?hl=es-

419#:~:text=opengl%20es%20una%20api%20multiplata forma,opengl%20dise%c3%b1ada%20para%20dispositi vos%20incorp orados.

Equipo editorial. (5 de agosto de 2021). página web. obtenido de concepto: https://concepto.de/pagina-web/

Higuerey, E. (20 de Noviembre de 2020). páginas web creativas. Obtenido de rockcontent: https://rockcontent.com/es/blog/paginas-web-creativas/

Juan, R. (17 de marzo de 2005). Definición de JavaScript. Obtenido de gestiopolis: https://www.gestiopolis.com/definicion-javascript/

Pérez Porto, J. M. (16 de mayo de 2023). Sitio web. Obtenido de definicion: https://definicion.de/sitioweb/

Perez, O. J. (12 de mayo de 2016). webgl y three js curso efectivo. obtenido de formacion.tutellus: https://formacion.tutellus.com/tecnologia/des arrollo-web/webgl-y-three-js-curso-efectivo- 11983

Scholastic. (15 de Marzo de 2014). meomi design.

obtenido de significado: http://www.significadoes.com/1/que-significado/meomi

Seguro, N. (16 de Septiembre de 2022). ¿Qué es el desarrollo web y por que es importante? Obtenido de Profesor @Coderhouse: https://latam.coderhouse.com/blog/que-es-el-desarrolloweb

Wearevideocontent. (29 de marzo de 2022). la animación 3d clave para tus proyectos audiovisuales. obtenido de video.wearecontent: https://video.wearecontent.com/blog/animacion/animacion-3d/

Wiki. (11 de febrero de 2022). ¿qué es webgl?

Obtenido de overant: https://www.overant.com/wiki/que-es- webgl/

Wikipedia. (16 de enero de 2020). discusión:sketchfab. obtenido de wiki: https://es.wikipedia.org/wiki/discusi%c3%b3n:sketchfab

78